A Conspectus on US Energy

Howard Hayden

UConn (Emeritus) Pueblo West, CO

Great source of data

www.eia.doe.gov

Look up aer2007 (Annual Energy Review, and pick your year)

American Physical Society Meeting at Denver

From Scientific American ca. 1970

American Physical Society Meeting at Denver

All US Energy 2007 = 107 EJ_{thermal}

American Physical Society Meeting at Denver

All 2007 Renewables = $7.2 EJ_t$

American Physical Society Meeting at Denver

All 2007 US Electricity from 44.4 EJ₊

American Physical Society Meeting at Denver

Electricity from Renewables = 0.35 × 10¹⁵ Wh

US Energy Usage

American Physical Society Meeting at Denver

Sources, Dist., & Sinks

American Physical Society Meeting at Denver

Scientific American (1968)

May 2, 2009

U.S. ENERGY-CONSUMPTION GROWTH (curve in color) has outpaced the growth in population (black) since 1900, except during the energy cutback of the depression years.

U.S. Per-capita energy consumption

American Physical Society Meeting at Denver

History of Renewables: The Decline from 100%

May

Virtually all solar energy comes from two sources

American Physical Society Meeting at Denver

Solar Intensity

Above atmosphere \rightarrow 1368 W/m²

- Surface, noon clear sky, sun overhead
 950 W/m²
- Average 24/7/365 → 200 W/m² ± 20% (covers most of US)
- Note: All solar systems should be expressed in W/m² (save, perhaps, hydro)

Note on hydro & wind.

- EIA / DOE reckons heat in BTU
- EIA / DOE reckons electricity in millions (or billions) of kWh
- 1 kWh = 3413 BTU (direct conversion)
- But steam engines typically require about 10,000 BTU to get 1 kWh.
- For wind & hydro, EIA / DOE multiplies kWh by \approx 3 for "replacement" purposes

EIA example

✓ Hydro:
 ✓ 2.46 × 10¹⁵ BTU
 ✓ 248.3 billion kWh
 ✓ 9,910 BTU / kWh instead of 3413 (direct)

Solar Math: Find the largest

- A. 11,700 calories per square centimeter during one month
- B. 254 BTU per square foot per minute
- C. 2 MWe generated per 130 acres of solar collector
- D. 1/2 cord of white oak per acre per year
- E. 397 Langleys per day

Which is largest?

- B: 89 W/m²
- C: 800 W/m²
- ♥ D: 15 W/m²
- E: 0.05 W/m²

N.B. Use a consistent system of units.

The Fair-haired boys

Corn -> ethanol >We'll ignore this abomination Wind (0.3% of U.S. energy) Solar-thermal (the largest) + Solar-thermal/electric + Photovoltaics $\simeq 0.07\%$ of U.S. energy Wind $\approx 50 \times \text{Solar} / \text{PV}$ (electricity)

Wind

American Physical Society Meeting at Denver

Power from Wind

- Proportional to R²
- Proportional to V³
- $V_{\text{tip}} \approx 6 \times V_{\text{wind}}$
- Separation of adjacent turbines typically 10 diameters

 $P(\text{watts}) \cong 0.8^* [R(\text{meters})]^2 \times [v(\text{meters/sec})]^3$

at maximum possible efficiency

American Physical Society Meeting at Denver

Power from Wind: Output Power versus Wind speed

May 2, 2009

American Physical Society Meeting at Denver

corkhayden@comcast.net

Designing the Capacity Factor

- Huge generator on a pinwheel
 >0% annual C.F.
- Huge blades driving 1-watt generator
 Near 100% annual C.F.
- Choose an engineering compromise
 Now designed for 35% annual C.F.
 Most places don't reach it.
- Wind electricity is not dispatchable

Wind Power (%), 1-hr intervals

6 turbines

104 turbines, 4 locations

Jay Apt, J. Power Sources 169 (2007), 369-374

American Physical Society Meeting at Denver

Power from Wind: Land requirements

Power output *per unit land area* of wind farm is independent of R $P \propto R^2$; $D_{\text{separation}} \propto R$; $P/A_{\text{land}} = \text{const}$ Actual results of year-round average power production from wind farms >About 12.5 kW/ha (5 kW per acre) 770 km² (300 mi²) for 1000 MW Will environmentalists tolerate it?

Solar Electricity

Solar-thermal electricity
 2-angle tracking (Field of mirrors)
 1-angle tracking (Parabolic mirrors)
 Photovoltaics

Solar-2 (Field of 2-axis mirrors)

10 MW peak on 53 hectares

American Physical Society Meeting at Denver

Solar-II (in Mojave Desert)

10 MW, full-tilt, noon, sunny day 1.6 MW average

Serious power station: 500 MW (?) around the clock around the year

> I (Cork) Hayden len@comcast.net

Solar/thermal-electric One-axis parabolic mirrors

Solar Energy Generating System (SEGS)

355 MW peak on ~ 725 hectares

~ $10W/m^2 (100 \text{ kW/ha})$ on 24/7/365 basis

Human

American Physical Society Meeting at Denver

Solar/thermal-electric

- This California system produces almost all solar electricity in the US --- 616 GWh 2006
- PV is so insignificant that the US Energy Information Agency (<u>www.eia.doe.gov</u>) doesn't bother keeping track of it separately from solar/thermal-electric.

Photovoltaics

Main Problem #1: >Asking a broad spectrum to do a quantum job Main Problem #2 Sunlight is dilute Main Problem #3 >You can collect solar energy only where you put collectors

Solar PV Replaces Nuclear?

Biomass

- Open-field growth
 - Plant small seeds, get big plants
- Closed-environment growth
 - Must build structure
 - Better control
- Chlorophyll absorbs 6.6% of the solar spectrum.
- <P_{thermal} / A > ≈ wind_{elec}, at best (with good water, fertilizer, weed control, insect control...)
- Always competes with food production
 'Nuff said

It's your turn