Designing an Introductory Physics Course For Biology Majors

Ken Heller
School of Physics and Astronomy University of Minnesota

6 year continuing project to improve this course contributions by:
Many faculty and graduate students of \mathbf{U} of M Physics Department especially A. Grosberg In collaboration with U of M Physics Education Group - P. Heller, grad students, post docs

Details at http://groups.physics.umn.edu/physed/
Supported in part by Department of Education (FIPSE), NSF, and the University of Minnesota

Students in Physics for Biology Majors 600 students/term (class size 150 - 300)

Majors

Biological Science 36%
Pre-Med 31\%

Allied Health 18\%
Social Science 3\%
Kinesiology 2\%
Architecture 1\%
Agriculture/Ecology 1\%
Other 8\%
Male
Female
41\%
59\%
Freshman
7\%
Sophomore 38\%
Junior 19\%
Senior
17\%

Had U. Calculus	$\mathbf{7 1 \%}$	Expect A	$\mathbf{4 8 \%}$
(Had HS Calculus)	$\mathbf{5 0 \%}$	Work	$\mathbf{7 4 \%}$
Had HS Physics	$\mathbf{7 1 \%}$	Work more than 10 hrs/wk	$\mathbf{5 0 \%}$

Setting Goals

 > Whose Goals?$>$ Biology Faculty

$>$ Students
$>$ Employers
$>$ Society
$>$ Do they make sense?
> Student Skill \& Knowledge Base

$>$ Internal Logic of Physics
$>$ Research Background on Learning
> Instructional Framework
> Constraints of Reality
$>$ At what level can you accomplish them?
> How Much Is Enough
> Data and Quality Assurance

Questionnaire for Faculty

- Goals for Their Students

Rate Possible Goals
Free Response

- Content

Choose Textbook Chapters

- Discussion Section Format Choose Format
- Laboratory Format

Choose Format

http://groups.physics.umn.edu/physed

Responding Faculty

$N=20$ (60\% response)

- Biochemistry, Molecular Biology and Biophysics (5)
- General Biology (1)
- Genetics, Cell Biology and Development (3)
- Ecology, Evolution and Behavior (2)
- Microbiology (3)
- Neuroscience (3)
- Plant Biology (3)

Biology Faculty Questionnaire

In what year should your students take physics?

	Freshman	Sophomore	Junior	Senior
$\%$	20	75	5	0

How many semesters of physics do you think should be required for your students?

	0	1	2	3	4	5	6
$\%$	0	15	75	0	0	0	0

Goals: Biology Majors Course 2003
Highest Rated (5 pt scale)
4.9 Basic principles behind all physics (*1)
4.4 General qualitative problem solving skills
4.3 Use biological examples of physical principles (*2) \rightleftharpoons Modified survey in
4.2 Overcome misconceptions about physical world (*4)
4.1 General quantitative problem solving skills (*3)Vresponse to CBSCurriculum
4.0 Real world application of mathematical concepts and techniques
4.0 Know the range of applicability of the principles of physics
Goals: Calculus-based Course (88\% engineering majors) 1993
4.5 Basic principles behind all physics
4.5 General qualitative problem solving skills
4.4 General quantitative problem solving skills
4.2 Apply physics topics covered to new situations
4.2 Use with confidence
Goals: Algebra-based Course (24 different majors) 1987
4.7 Basic principles behind all physics
4.2 General qualitative problem solving skills
4.2 Overcome misconceptions about physical world
4.0 General quantitative problem solving skills
4.0 Apply physics topics covered to new situations

Lowest Rated Goals (5 pt scale)

Prepare students for the MCAT	20	25	40	5	5	0	2.4
Understand and appreciate the historical development and intellectual organization of physics	10	25	50	15	0	0	2.7
Understand and appreciate 'modern physics' (e.g. nuclear decay, quantum optics, cosmology, quantum mechanics, elementary particles,...)	0	30	45	25	0	0	3.0
Use computers to solve problems within the context of physics	10	10	35	30	10	0	3.1
Formulate and carry out experiments	10	10	40	25	15	0	3.3
Express, verbally and in writing, logical, qualitative thought in the context of physics	5	0	35	45	10	0	3.4

Free Faculty Responses - Goals

1. In your opinion, what is the primary reason your department requires students to take this physics course?

Underlying Principles Application Problem solving/math

- To understand the basic laws of physics; to be able to apply physical principles to other problems; to overcome fear of math, quantitative approach to science.
- General understanding of how 1st \& 2nd order linear differential equations explain behavior of various physical systems (mechanics, thermodynamics, electricity).
- Living things rely on a number of physical principles. Concepts we cover in lecture \& techniques/equipment used in the laboratory require an understanding of physics. Physics is fundamental to many biological processes, \& develop skills in problem-solving \& modeling.
- Provide basic concepts in physics as applied to biological functions; learn how to think quantitatively about these applied physics concepts.

Content

In two semesters it is impossible to cover every topic in physics. The purpose of this question is to determine your priorities of the topics in the course. Below are the chapter headings from a typical textbook at this level. Please place the integer number of weeks for each chapter that, in your judgment, allows students to understand the material at the level you desire. Each week consists of 3 lectures, 1 discussion section, and a 2-hour laboratory. The total number of weeks should equal 26 to account for a course introduction at the beginning of the semester and a review at the end. Please do not use fractions of a week.

Please place a star (*) next to the FOUR chapters listed above that you consider to be the MOST IMPORTANT for your students.

\%T	$\%$ \%	
$\mathbf{9 0}$	\checkmark	15
85	\checkmark	15
85	\checkmark	20
85	\checkmark	15
85	\checkmark	13
80	\checkmark	0
80	\checkmark	0
75	\checkmark	15
75	\checkmark	5
75	\checkmark	0
75		5
75	\checkmark	9
70		0
70	\checkmark	9
65	\checkmark	0
65	\checkmark	0
65		4
65	\checkmark	15
65	\checkmark	0
60	\checkmark	4
60	\checkmark	0
55	\checkmark	0
55	\checkmark	4

Potential energy and conservation of energy
Kinetic energy and work
Entropy and the second law of thermodynamics
Electric charge and force
Electric potential
Linear motion
Forces and Newton's Laws
\checkmark Included in course 20/23 Chapters

Units, dimensions and vectors
Temperature and ideal gas
Electric field
Molecules and gases (e.g. probability distributions of velocity, equipartition) Mirrors and lenses
Momentum and collisions
Nuclear physics and radioactive decay
Two dimensional motion
Gravitation
Currents in materials (e.g. resistance, insulator, semiconductors)
Heat flow and the first law of thermodynamics
Magnetic forces and fields
Geometrical optics (e.g. reflection and refraction)
Diffraction
Oscillatory motion
Currents and DC circuits

\% T	\%*
50	$\checkmark \quad 0$
45	$\checkmark \quad 5$
45	0
45	0
45	$\checkmark \quad 4$
45	$\checkmark \quad 0$
40	$\checkmark \quad 5$
40	5
40	0
40	4
40	0
35	$\checkmark \quad 4$
35	$\checkmark \quad 0$
30	0
30	0
30	0
30	9
30	0
20	0
15	0
15	0
0	0

Rotations and torque
Applications of Newton's laws
Angular momentum
Gauss' law
Currents and magnetic fields (e.g. Ampere's law, Biot-Savart law)
Interference
Fluid mechanics
Properties of solids (e.g. stress, strain, thermal expansion)
Capacitors and dielectrics
Maxwell's equations and electromagnetic waves
Relativity
Faraday's law
Superposition and interference of waves
Mechanical waves
Statics
Magnetism and matter (e.g. ferromagnetism, diamagnetism)
AC circuits
Atomic physics
Quantum physics
Magnetic Inductance
Particle physics
Other. Please specify.

Choices Based on Responses

- Emphasize Basic Principles
- Causality
- Interaction
- System
- Dynamics
- Conservation
- Field
- Vectors and Scalars
- Newton's $2^{\text {nd }}$ and $3^{\text {rd }}$ Law
- Conservation of Energy
- Description of Motion
- Entropy and Free Energy
- Conservation of Charge
- Electric Field and Force
- Magnetic Field and Force
- Ampere's Law
- Faraday's Law
- Electromagnetic Waves, Light, and Imaging
- Emphasize Biological Systems Context
- Complex
- Open
- Cyclic
- Rates of change
- Emphasize Mathematical Problem Solving

- Logic and organization
- Justified decisions and approximations important
- Use Calculus
- Rates (differential equations where possible instead of integrals)
- Assume an Introductory Biology, Chemistry \& Calculus Vocabulary

Yr 1 Content (first semester) - Physics for Biology Majors

Week	Topic	Chapter	Week	Topic Chapter	
1-2	Conservation, Systems, \& Cyclic Processes - Electric	21, 20	10-11	Interaction Mechanisms -Forces	4
2-3	Energy \& Energy Transfer	6	11-12	Applications - Forces	$\begin{aligned} & 5,11, \\ & 19 \end{aligned}$
4-5	gy \& Ther	16, 17			
	Processes		13-14	Predicting Motion	3,12
6-7	Cyclic Processes \&	18		Oscillations	
8-9	Conservation of Energy \& Momentum	7, 8		Constant acceleration	

Unacceptable to most physics professors to start with circuits.

Textbook: Serway \& Jewitt
Principles of Physics - $\mathbf{3}^{\text {rd }}$ Edition

Yr 2 Content (first semester) - Physics for Biology Majors

Week	Topic	Chapter
1-3	Forces \& Equilibrium	$\begin{gathered} 1,4,5 \\ 15 \end{gathered}$
4	Torque \& Equilibrium	10
5-6	Force, Energy Transfer, Conservation of Energy	6
7-8	Energy \& Thermal Processes	16, 17
8-9	Potential Energy	7,17

OK with most physics professors but prefer to put thermodynamics at the end.

Week Topic
Chapter

10-11	Cyclic Processes, Entropy, Free Energy	18
12-13	Predicting repetitive Motion - Kinematics, Dynamics, Oscillations	2,4, 12
$14-15$	Predicting Non- repetitive Motion - Kinematics, Dynamics	3,5, 15

Enough time for average student to grasp material
Students don't like jumping around the textbook
Textbook: Serway \& Jewitt
Principles of Physics - $\mathbf{3 r d}^{\text {rd }}$ Edition

Yr 3-6 Content (first semester) - Physics for Biology Majors

Wee	Topic	Chapter	Week	Topic	hapter
1-3	Forces, Torques \& Equilibrium (includes fluids)	$\begin{gathered} 1,4,5 \\ 15 \end{gathered}$	11-12	Energy \& Thermal Processes	$\begin{aligned} & \text { 16, } \\ & 17 \end{aligned}$
4-5	Force, Energy Transfer, Conservation of Energy	6	12-14	Cyclic Processes, Energy, Free Energy	18
6	Potential Energy (includes fluid flow)	7, 15	14 Chapters in 15 weeks Includes fluid statics and dynamics, thermodynamics No momentum, rotational		
7-8	Predicting Motion Dynamics \& Oscillations	$\begin{gathered} 2,4,10, \\ 12 \end{gathered}$			
9-10	Predicting Nonrepetitive Motion (includes motion in fluids)	$\begin{array}{\|c} \hline 3,5,11, \\ 15 \end{array}$	Reduced constant acceleration kinematics. Textbook: Serway \& Jewitt		

Yr 1-3 Content (second semester) - Physics for Biology Majors

Discussion Section Structure from Questionnaire

The discussion sections associated with this course are typically taught by graduate teaching assistants and could be structured in several ways. Please place an 'X' by that structure most appropriate for your students.
$9 \% \quad$ Students ask the instructor to solve specific homework problems on the board.
35 \% Instructor asks students to solve specific homework problems on the board.
17 \% Instructor asks students to solve unfamiliar textbook problems, then gives the solution on the board.
17 \% Instructor asks students to solve "real world" problems individually and write their solution on the board.
65 \% Students work in small groups to solve "real world" problems with coaching from the instructor.
9 \% Students work in small groups to solve conceptual questions with coaching from the instructor.
$17 \% \quad$ Other. Please describe.
Other:
x : Progression from 2 to 3 to 4 to 5.
x : It might be best to start with 1 - perhaps half of the hour - then give the students some "real world" examples to solve.
x : Again, I don't think any single approach is ideal on its own.

Laboratory Structure from Questionnaire

The laboratory associated with this course is typically taught by graduate teaching assistants and could be structured in several ways. Please place an ' X ' by that structure most appropriate for your students.

39\% A lab with well defined directions explaining how to use a simple apparatus to verify a physical principle.

39\% A lab with a well defined question or problem illustrating a physical principle and minimal guidance about how to use the simple apparatus.

30\% A lab where the students are given a general concept from which they must formulate an experimental question, then design and conduct an experiment from a choice of apparatus.

26\% Other. Please describe.
Other:
The first option followed by a lab section in which students design the experiment.
Progression from 1 to 2 to 3.
I suspect most students would benefit from 1 most. But the better students (honors?) would find 2 more interesting.
A mixture of these approaches.

Pedagogy - Learning is a Biological Process

Pedagogy - Cooperative Group Problem Solving

LECTURES

RECITATION SECTION

LABORATORY

TESTS

Four hours/week, sometimes with informal cooperative groups. Model constructing knowledge in response to problems, model organized problem solving framework.
One hour each Thursday - cooperative groups practice using a problem-solving framework to solve context-rich problems. Peer coaching, TA coaching.

Two hours/week -- same cooperative groups practice using a framework to solve context-rich experimental problems. Same TA. Peer coaching, TA coaching.

4 quizzes/semester on Friday -- problemsolving \& conceptual questions (2 problems, 10 multiple choice) (1 group problem in previous discussion section).

Scaffolding

Additional structure used to support the construction of a complex structure.

Removed as the structure is built

Examples of Scaffolding in teaching Introductory Physics

- An explicit problem solving framework
- A worksheet that structures the framework - removed early in the course
- Cooperative group structure that encourages productive group interactions
- Limit use of formulas by giving an equation sheet (only allowed equations)
- Explicit grading rubric for problem solutions to encourage expert-like behavior
- Problems that discourage novice problem solving
- Explicit grading rubric for lab problems to encourage expert-like behavior
- TA education and support in pedagogy

Individual Context- Rich Problem on an Exam

Your task is to design an artificial joint to replace arthritic elbow joints in patients. After healing, the patient should be able to hold at least a gallon of milk while the lower arm is horizontal. The biceps muscle is attached to the bone at the distance $1 / 6$ of the bone length from the elbow joint, and makes an angle of 80° with the horizontal bone. How strong should you design the artificial joint if you assume the weight of the bone is negligible.

Gives a motivation - allows some students to access their mental connections.
Gives a realistic situation - allows some students to visualize the situation.
Does not give a picture - students must practice visualization.
Uses the character "you" - allows some students to visualize the situation.

Group Context-Rich Problem in Discussion Section - Peer Coaching

Your research team uses interference to determine the thickness of thin films such as guanine (index of refraction 1.80) that give fish scales their sheen. The apparatus used has two slits 1.0 mm apart, a 600 nm laser light source, and a lens system to assure that parallel rays hit the slits. A screen is 1 meter from the slits. Initially you measure the interference pattern on the screen. You then find the thickness of the guanine by putting it just behind one of the slits and observing that the position of the central maximum on the screen shifts to the position formally occupied by the 30th bright fringe from the central maximum

> The problems students practice while being coached have the same structure as those on their tests.

What Using Cooperative Groups Does for Teaching Problem Solving

1. Following a logical problem solving framework seems too long and complex for most students.

Cooperative-group problem
 solving allows practice until the framework becomes more natural.
2. Complex problems that need a strategy are initially difficult.

Groups can successfully solve them so students see the advantage of a logical problem-solving framework early in the course.

What Using Cooperative Groups Does for Teaching Problem Solving

3. The group interactions externalize the planning, connection, and monitoring skills needed to solve problems allowing students to observe them in others.
4. Students practice using the language of the field, "talking physics", and explicitly connecting it to their existing knowledge base.
5. Students must deal with and resolve their misconceptions.
6. Coaching by instructors is more effective

> External clues of group difficulties
> Group processing of instructor input

Students Working Together in Structured Groups for Peer Coaching

Cooperative Groups

- Positive Interdependence
- Face-to-Face Interaction
- Individual Accountability
- Explicit Collaborative Skills
-Group Functioning Assessment

Just having students work together in groups is not beneficial

Teaching Students to Solve Physics Problems

Solving Problems Requires Conceptual Knowledge:

From Situations to Decisions using internal knowledge

- Visualize situation
- Determine goal
- Choose applicable principles
- Choose relevant information

- Construct a plan
- Arrive at an answer
- Evaluate the solution

Students must be taught a problem solving framework that does this explicitly

General Problem Solving Skills

How to solve a problem when you don't know how

Recognize the Problem

What's going on?

Describe the problem in terms of physics

What does this have to do with physics ?

Problem-solving Framework Used by experts in all fields

Chi, M., Glaser, R., \& Rees, E. (1982)

Plan a solution

Can I use what I know to get an answer?

Get an answer

Evaluate the solution

Can this be true?

AVERAGE FCI PRE-TEST \& POST-TEST SCORES

CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS 2003-2007

FCI for Calculus Based Physics for Biology Students

Math Diagnostic for Calculus Based Physics for Biology Students

FEMALE FCI PRE-TEST \& POST-TEST SCORES
CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS 2003-2007

MALE FCI PRE-TEST \& POST-TEST SCORES CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS 2003-2007

FCI ABSOLUTE GAIN BY GENDER
CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS 2003-2007

FINAL EXAM SCORES BY GENDER
CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS 2003-2007

COURSE GRADES BY GENDER
CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS 2003-2007

COURSE GRADE (\%)

Can the FCI be used as a Placement Test for physics?

COURSE GRADE VS. FCI PRE-TEST SCORE
CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS, 2003-2007

The FCI is not a good placement test and would discriminate against females.
Accounts for only about 15\% of final grade

Can a Math Skills Test be used as a Placement Test for physics?

COURSE GRADE VS. MATH PRE-TEST SCORE
CALCULUS-BASED PHYSICS FOR BIOLOGY \& PRE-MEDICINE, FALL TERMS, 2005-2007

A Math Skills Test is not a good placement test
Accounts for only about $\mathbf{2 0 \%}$ of final grade

Course Components Work Together

- Teach Students an Organizational Framework
- Emphasize decision making using physics
- Use writing as working memory
- Emphasize rule-based mathematics
- Use Problems that Require
- An organized framework
- Physics conceptual knowledge
- Connection to existing knowledge
- Use Existing Course Structure

Average dropout rate 5\% average D/F rate 3\%
Absolute grading scale Average course grade $73.5 \pm 0.3 \%$ B-

- Lectures and handouts - 200 students (Professors) MODELING
- Discussion Sections - 18 students (TAs) COACHING
- Labs - 18 students (TAs) COACHING
- All in contexts that connect with biology
- Modeling connections to biological systems
- Context-rich problems
- Context-rich problem solving labs

Coaching

Fading

Identify Critical Failure Points

Pedagogy Must Fail Gracefully Non-optimal implementation gives some success

1. Inappropriate Tasks

Must engage all group members (not just one who knows how to do it)
2. Inappropriate Grading

Must not penalize those who help others (no grading on the curve)
Must reward for individual learning
3. Poor structure and management of Groups

The End

Please visit our website for more information:

http://groups.physics.umn.edu/physed/

The best is the enemy of the good.
"le mieux est l'ennemi du bien"

Voltaire

