Sustaining Educational Innovations

Evidence and Approaches at CU Boulder

American Physical Society
April Meeting
Denver, CO
May 2009

Steven Pollock
Physics Department
University of Colorado at Boulder
Acknowledgements

Physics faculty:
Michael Dubson
Noah Finkelstein
Kathy Perkins
Steven Pollock
Carl Wieman

Ph. D. students:
Chandra Turpen
Lauren Kost
Charles Baily
Ben Spike
+recently graduated: 4 with PhD, 1 with MSc.

Postdocs/Scientists:
Wendy Adams
Stephanie Chasteen
Steven Goldhaber
Laurel Mayhew
Archie Paulson
Noah Podolefsky

School of Ed collaborators:
Valerie Otero
Derek Briggs
Kara Gray
Bud Talbott

This material is based upon work supported by the National Science Foundation under Grant No. REC 0448176, CAREER: Physics Education and Contexts of Student Learning. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSF.
Overview of PER

• Investigating education scientifically
• Far more to our classes than what is traditionally evaluated

• Physics education research has something to say about this
 – Models of student learning
 – Tools for measurements
 – evidence of impact
 – curricula / approaches

Theory
Experiment
Application
PER Theoretic Background

Individual transmissionist

Instruction via transmission

Content (E/M)

Individual

Active construction

Prior knowledge

Content

constructivist
Take home message:

Students learn less than 25% of the most basic concepts (that they don’t already know).

R. Hake, “…A six-thousand-student survey…” AJP 66, 64-74 (‘98).
Many PER curricular innovations
by actively engaging students...
R. Hake, "...A six-thousand-student survey..." AJP 66, 64-74 ('98).
modest reframing of class context
U. Washington Tutorials
50 min/wk, 30 students, 1 grad TA
+ undergrad Learning Assistant
(Weekly prep + LA seminar)

- Phys lecture
 3-600 students
 3 lectures/wk
 (No lab)

- Online HW System
 CAPA or MP

- Interactive Lectures
 Peer Instruction,
 pers. resp. system

- Text
 trad or PER based
Transformations at CU

Peer Instruction
Eric Mazur

Interactive Lecture Demonstrations
Active Learning in Introductory Physics
David R. Sokoloff
Ronald K. Thornton

Just-in-Time Teaching:
Blending Active Learning with Web Technology

Tutorials
Introductory Physics
Lillian G. McDermott, Peer S. Shaffer
Department of Physics
University of Washington
Tutorials in Introductory Physics

Reconceptualize Recitation Sections

• Materials
• Classroom format / interaction
• Instructional Role
• Use of Learning Assistants
CU Model of Teacher Prep

• Begin *within* physics department

• Learning Assistants:
 Use UG’s to implement PER-based materials
 – Model best-practices for all students
 – Improve education of all students
 – Increase likelihood students engage in teaching

• Improve content mastery of future teachers

Tutorial vs. Trad'l Recitation
Tutorial
Reproducibility

<table>
<thead>
<tr>
<th>Topic</th>
<th>U. Wash. no tutorial</th>
<th>UW tutorial</th>
<th>CU tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton & constraints</td>
<td>45%</td>
<td>70%</td>
<td>75%</td>
</tr>
<tr>
<td>Force diagrams</td>
<td>30%</td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>Newton’s III law</td>
<td>15%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>Combine Newton’s laws</td>
<td>35%</td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

CU: Pre- Post FMCE scores

Beyond the FMCE: Exam comparisons

N.B. 12 points is roughly 1 letter grade.
Is the recitation curriculum all that matters?

instructor effects?
Back to the FCI/FMCE

traditional lecture interactive engagement

\[\langle g \rangle = \frac{\text{post-pre}}{100-\text{pre}} \]

R. Hake, "...A six-thousand-student survey..." AJP 66, 64-74 (‘98).
Replication, but with strong variations Why?
1120 BEMA pre/post

F04 (N=319) Post: 59% S05 (N=232): 59%

does it last?
Longitudinal

Upper division majors’ BEMA scores

Yellow: students who had been E&M LAs

S. Pollock, 2007 PERC Proc. 951, p.172
Conclusions

• Educational practice is a researchable endeavor
 – We can make systematic progress
 – Imperative to include scientists
• Possible to achieve dramatic repeated results
 – Build on/adapting research-based curricula
• CU model strongly couples:
 – Reform and Research
 – K12 Teacher prep

It’s not about our teaching, it’s about student learning
Questions?

Much more at: per.colorado.edu
Or stem.colorado.edu