Searches Beyond the Standard Model at the LHC

Yuri Gershtein
There Must Be New Physics!

- Explain low mass of Higgs (hierarchy problem)
- Explain Dark Matter
 - why shouldn’t it be produced at colliders?
- Explain matter-antimatter imbalance in the Universe
- Explain why Yukawa couplings range more than 11 orders of magnitude from electron neutrino to top quark
- Would be nice to unify gauge forces (and incorporate gravity at some point...)

We also have ideas what this new physics could be - which lead us to believe that there is something new at energies ~ electroweak scale

- we just need to look in the right place...
Money for the operation through high price electricity period are allocated, the length of the run is ~11 months with minimum sensitivity to delays.

Energy is 10 TeV, integrated luminosity ~200 pb$^{-1}$

Dataset with real discovery potential
- 10 TeV is 5 times Tevatron’s energy
Event Counts

200 pb\(^{-1}\)
10 TeV

Available during the 2009-2010 Run

New Physics

5/4/2009
Yuri Gershtein (Rutgers) APS 2009 April Meeting
The ATLAS detector
The CMS detector

Total weight: 12'500 T
Overall diameter: 15.0 m
Overall length: 21.5 m
Magnetic field: 4 Tesla
In This Talk...

You’ve heard how great the LHC discovery potential is for many years now – and we keep improving our analysis methods.

What I’ll try to do in this talk is to focus on a few examples of how we think we will be able to prove to ourselves and to the world that we have made a discovery

- topology driven searches
- simple and inclusive methods
- data driven background estimation

“Supersymmetry”
- counting experiments & shapes of distributions
- Jets+MET
- lepton+Jets+MET

“Smoking gun”
- unmistakably sharp features (almost self-calibrating...)
- Z’, W’
- black holes

Detector Commissioning
- we now have real data to work with!
Extra Gauge Bosons

- 2 electrons
 - $p_T > 30$ GeV
 - $|\eta| < 2.5$ & fiducial cuts
 - isolated

- electron
 - $p_T > 50$ GeV
 - $|\eta| < 2.5$
 - isolated
 - MET > 50 GeV
 - $\sum p_T^{\text{leptons}} + \sum E_T^{\text{jets}} > 0.5$
Extra Gauge Bosons

- Not very significant change in reach in 10 vs 14 GeV
 - optimization of running conditions done by physics reach, not E_{cm}!

5σ discovery reach

<table>
<thead>
<tr>
<th>Z' mass (TeV)</th>
<th>$\sigma(14 \text{ TeV})/\sigma(10\text{ TeV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Z'_{SSM}
 - Tevatron's 95%CL' limit
- Z'_{ij}
 - $\sqrt{s}=10 \text{ TeV}$
 - $\sqrt{s}=14 \text{ TeV}$

5/4/2009

Yuri Gershtein (Rutgers) APS 2009 April Meeting
Black Holes

- Models with Large Extra Dimensions (i.e. ADD) Black holes could be produced at the LHC if the M_{Planck} is $O(1-10 \text{ TeV})$

- They will decay through Hawking’s radiation into a large number of objects democratically

- Identify objects: muons, electrons, photons and jets
- sum up their $|p_T|$ in addition to cut on sum $|p_T|$ require existence of one lepton above 200 GeV or, alternatively, four objects above 200 GeV
SUSY @ LHC

Since superpartners of quarks and gluinos carry color, they are the most abundantly produced SUSY particles at the LHC – small kinematical suppression compared to Tevatron

\[\tilde{q}\tilde{q} \rightarrow q\tilde{\chi} \quad \bar{q}\tilde{\chi} \quad \text{at least two high } E_T \text{ jets} \]

\[\tilde{q}\tilde{g} \rightarrow q\tilde{\chi} \quad q\bar{q}\tilde{\chi} \quad \text{at least three high } E_T \text{ jets} \]

\[\tilde{g}\tilde{g} \rightarrow q\bar{q}\tilde{\chi} \quad q\bar{q}\tilde{\chi} \quad \text{at least four high } E_T \text{ jets} \]

SUSY events at the LHC, even those with leptons are very jetty. Strategy is to have a grid of analyses:

<table>
<thead>
<tr>
<th></th>
<th>1 jet</th>
<th>2 jet</th>
<th>3 jets</th>
<th>4 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 lepton</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>1 lepton</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2 lepton</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>3 leptons</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>taus</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>b's</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Jets + Missing Transverse Energy

- Very high probability of new physics
 - if Dark Matter particles are $O(100 \text{ GeV})$ they will be produced by the LHC resulting in missing E_T. Since it is hadronic collider association with jets is natural
 - staple Supersymmetry search
- One of the toughest channels: instrumental background
 - Missing E_T is sensitive to all the noise, miscalibration, beam halo and hard to clean up and commission
 - Jets fluctuate and can be catastrophically under-measured in a way that is not reproduced by simulation
 - jet cross-section is humongous even small effects in jet response can look like new physics
Jets + MET

- at least 4 jets $E_T > 50$ GeV
 - one with $E_T > 100$ GeV
- MET > 100 GeV
- lepton veto
- sphericity
- for three leading jets $\Delta \phi (\text{jet}, \text{MET}) > 0.2$
Measuring Jet Response

- Measure how often jets are mis-measured
 - Gauss + low energy tail
 - measure gaussian component from γ+jet balance
 - measure tail from “Mercedes” events

- Take events at low MET and apply the non-Gaussian part of the response to them to predict the high MET tail
Physics Background to Jets+MET

- Irreducible background is coming from Z+jets, where Z decays into neutrinos
 - high order QCD predictions have large uncertainties

- Can be inferred by looking at Z+jets → l+1−+jets but this results in a large statistical error due to smallness of ee & µµ branchings

- Another idea: Z is just a “heavy photon” – at high Q^2 the should be little difference between Z+X and γ+X
 - use γ+jets events to predict Z+jets
 - works very well, theoretical uncertainties in the ratio of Z to γ are small

Other backgrounds from W and top involve lost leptons and are “easily” estimated from lepton+jets+MET samples
Jets+MET without MET

For 2 jets + MET channel can avoid relying on MET altogether by devising clever topological variables

\[\alpha_T = \frac{E_T^{j2}}{M_T^{j1,j2}} \approx \frac{\sqrt{E_T^{j2} / E_T^{j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}} \]

For perfectly measured QCD di-jets \(\alpha_T = 0.5 \). If one of the jets is undermeasured, \(\alpha_T \) decreases.

- 2 jets, \(E_T^{j1} + E_T^{j2} > 500 \) GeV
- lepton veto
- \(\alpha_T > 0.55 \)

It is possible to generalize \(a_T \) variable to multi-jet case – work is ongoing...

CMS preliminary
Lepton+jets

- Requiring a lepton really helps reducing QCD
- But a new challenge arises: how to deal with W+jets and top backgrounds
 - theoretical prediction has large uncertainties. After years of running at 2 TeV, Tevatron still has to correct W+jets simulation using Z+jets
- Note, that for the largest background sources, W+jets and semi-leptonic top, MET always comes from a single neutrino from W decay creating a sharp jacobian peak
 - use it to normalize the background predictions!

Only guaranteed to work if Variable 1 and 2 are uncorrelated
Lepton+jets

Simulation seems to tell us that MET and M_T are not strongly correlated.

In the absence of signal the method works perfectly.

<table>
<thead>
<tr>
<th></th>
<th>$\not{E}_T > 100$ GeV</th>
<th>$\not{E}_T > 300$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>True BG</td>
<td>203 ± 6</td>
<td>12.4 ± 1.6</td>
</tr>
<tr>
<td>Estimated BG</td>
<td>190 ± 8</td>
<td>9.4 ± 0.7</td>
</tr>
<tr>
<td>Ratio(Est./True)</td>
<td>0.93 ± 0.05</td>
<td>0.76 ± 0.11</td>
</tr>
</tbody>
</table>

The problem is that “background” samples are contaminated with signal – reduced sensitivity...

<table>
<thead>
<tr>
<th></th>
<th>$\not{E}_T > 100$ GeV</th>
<th>$\not{E}_T > 300$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>True BG</td>
<td>203 ± 6</td>
<td>12.4 ± 1.6</td>
</tr>
<tr>
<td>Estimated BG</td>
<td>296 ± 10</td>
<td>33.3 ± 1.4</td>
</tr>
<tr>
<td>True BG+SUSY</td>
<td>653 ± 8</td>
<td>245 ± 4</td>
</tr>
</tbody>
</table>
Start-up and Commissioning

It is a large and difficult task to commission detectors like CMS and ATLAS.

But by the time the beam collisions come we will have operated the detectors for almost two years:

- system stabilities and noise measured
- trackers partially aligned
- magnetic fields mapped out with cosmic muons
- billions of events acquired, reconstructed, distributed, re-reconstructed, and compared to detector simulation
- countless problems solved

The start-up is likely to be very different from the Run II Tevatron, where detector and accelerator were brought up ~ simultaneously.
Cosmics Event Example: ATLAS
Cosmics Event Example: CMS
Tracker Alignment

- alignment algorithms work
- achieved precision is already better than considered MC scenario after 10 pb$^{-1}$ of data
data
total stopping power in PbWO4
collision loss
bremsstrahlung

CMS ECAL

Measured stopping power (corrected for containment) of muons in ECAL
Note – the lines are not fits, but absolute predictions

ATLAS muons

consistency of direction in the azimuthal angle between Muon and Inner Tracker - good agreement with MC
One Beam

~2x10^9 protons on collimator
~150 m upstream of CMS

Energies >100 TeV!!

Hundreds of thousands muons/event

5/4/2009

Yuri Gershtein (Rutgers) APS 2009 April Meeting
Summary

- LHC operations with two beams will start this year!

- Detectors had more than a year to iron out problems – may be able to produce physics grade results soon after collisions

- Methods for early analysis are improving

Stay tuned!!