

Searches Beyond the Standard Model at the LHC

Yuri Gershtein

There Must Be New Physics!

- Explain low mass of Higgs (hierarchy problem)
- Explain Dark Matter
 - why shouldn't it be produced at colliders?
- Explain matter-antimatter imbalance in the Universe

- Explain why Yukawa couplings range more than 11 orders of magnitude from electron neutrino to top quark
- Would be nice to unify gauge forces (and incorporate gravity at some point...)

We also have ideas what this new physics could be which lead us to believe that <u>there is</u> something new at energies ~ electroweak scale

- we just need to look in the right place...

5/4/2009

Yuri Gershtein (Rutgers) APS 2009 April Meeting

2009-2010 LHC Run

Year						2009	Э										20	010								
Month	F	М	Α	М	J	J	Α	S	0	N	Þ	J	F	м	Α	М	J	J	Α	S	0	N	D	J	F	М
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH
									24 w	eek:	ph	ysics	s pos	sible	9									>		
Base '	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH	SH
									44 w	eek:	ph	ysics	s pos	sible	2							Ł	-			
	Ģ	Gai	n 2	0 v	vee	eks	of	ph	iys	ics	n	20	10	by	ru	nn	ing	gdu	uri	ng	wi	nte	r n	nor	ntł	IS
														5	_						_	~				L
															HI	GH	pri	ce E	lec	tric	ity					
Delay (4W)	SH	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH

- Money for the operation through high price electricity period are allocated, the length of the run is ~11 months with minimum sensitivity to delays
- Energy is 10 TeV, integrated luminosity ~200 pb⁻¹
- Dataset with real discovery potential
 - 10 TeV is 5 times Tevatron's energy

5/4/2009

In This Talk...

- You've heard how great the LHC discovery potential is for many years now – and we keep improving our analysis methods.
- What I'll try to do in this talk is to focus on a few examples of how we think we will be able to prove to ourselves and to the world that we have made a discovery
 - topology driven searches
 - simple and inclusive methods
 - data driven background estimation
- "Supersymmetry"
 - counting experiments & shapes of distributions
 - Jets+MET
 - Iepton+Jets+MET

- Smoking gun"
 - unmistakably sharp features (almost self-calibrating...)
 - Z', W'
 - black holes
- Detector Commissioning
 - we now have real data to work with!

Extra Gauge Bosons

Extra Gauge Bosons

Not very significant change in reach in 10 vs 14 GeV

• optimization of running conditions done by physics reach, not E_{cm}!

Black Holes

- Models with Large Extra Dimensions (i.e. ADD) Black holes could be produced at the LHC if the M_{planck} is O(1-10 TeV)
- They will decay through Hawking's radiation into a large number of objects democratically
- Identify objects: muons, electrons, photons and jets
- sum up their |p_T|
- in addition to cut on sum |p_T| require existence of one lepton above 200 GeV or, alternatively, four objects above 200 GeV

Yuri Gershtein (Rutgers)

SUSY @ LHC

- Since superpartners of quarks and gluinos carry color, they are the most abundantly produced SUSY particles at the LHC
 - small kinematical suppression compared to Tevatron
 - $\begin{array}{l} \widetilde{q}\overline{\widetilde{q}} \rightarrow q\widetilde{\chi} \ \overline{q}\widetilde{\chi} & \text{at least two high } \mathsf{E}_{\mathsf{T}} \text{ jets} \\ \widetilde{q}\widetilde{g} \rightarrow q\widetilde{\chi} \ q\overline{q}\widetilde{\chi} & \text{at least three high } \mathsf{E}_{\mathsf{T}} \text{ jets} \\ \widetilde{g}\widetilde{g} \rightarrow q\overline{q}\widetilde{\chi} \ q\overline{q}\widetilde{\chi} & \text{at least three high } \mathsf{E}_{\mathsf{T}} \text{ jets} \end{array}$
- SUSY events at the LHC, even those with leptons are very jetty. Strategy is to have a grid of analyses:

	1 jet	2 jet	3 jets	4 jets
0 lepton		✓	1	✓
1 lepton		1	1	1
2 lepton SS / OS		1	√	√
3 leptons	√			
taus		1	1	1
b's		1	1	1

5/4/2009

Yuri Gershtein (Rutgers) APS 2009 April Meeting

Jets + Missing Transverse Energy

- Very high probability of new physics
 - if Dark Matter particles are O(100 GeV) they will be produced by the LHC resulting in missing E_T. Since it is hadronic collider association with jets is natural
 - staple Supersymmetry search

One of the toughest channels: instrumental background

- Missing E_T is sensitive to all the noise, miscalibration, beam halo and hard to clean up and commission
- Jets fluctuate and can be catastrophically under-measured in a way that is not reproduced by simulation
- jet cross-section is humongous even small effects in jet response can look like new physics

Jets + MET

- at least 4 jets E_T>50 GeV
 one with E_T>100 GeV
- MET > 100 GeV
- Iepton veto
- sphericity
- for three leading jets $\Delta \phi$ (jet,MET)>0.2

Measuring Jet Response

- Measure how often jets are mis-measured
 - Gauss + low energy tail
 - measure gaussian component from γ +jet balance ٠
 - measure tail from "Mercedes" events ٥
- Take events at low MET and apply the non-Gaussian part of the response to them to predict the high MET tail

ATLAS: CERN-Open-2008-020

Physics Background to Jets+MET

- Irreducible background is coming from Z+jets, where Z decays into neutrinos
 - high order QCD predictions have large uncertainties
- Can be inferred by looking at Z+jets → l⁺l⁻+jets but this results in a large statistical error due to smallness of ee & μμ branchings
- Another idea: Z is just a "heavy photon" – at high Q² the should be little difference between Z+X and γ+X
 - use γ+jets events to predict Z+jets
 - works very well, theoretical uncertainties in the ratio of Z to γ are small

CMS Preliminary

Other backgrounds from W and top involve lost leptons and are "easily" estimated from lepton+jets+MET samples

5/4/2009

Jets+MET without MET

 For 2 jets + MET channel can avoid relying on MET altogether by devising clever topological variables

$$\alpha_T = \frac{E_T^{j2}}{M_T^{j1,j2}} \approx \frac{\sqrt{E_T^{j2} / E_T^{j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}}$$

- For perfectly measured QCD di-jets α_T =0.5. If one of the jets is undermeasured, α_T decreases.
 - 2 jets, $E_T^{j1} + E_T^{j2} > 500 \text{ GeV}$
 - Iepton veto
 - α_T>0.55

It is possible to generalize $a_{\rm T}$ variable to multi-jet case – work is ongoing...

L. Randall, D. Tucker-Smith, PRL 101:221803,2008

Lepton+jets

- Requiring a lepton really helps reducing QCD
- But a new challenge arises: how to deal with W+jets and top backgrounds
 - theoretical prediction has large uncertainties. After years of running at 2 TeV, Tevatron still has to correct W+jets simulation using Z+jets
- Note, that for the largest background sources, W+jets and semi-leptonic top, MET always comes from a single neutrino from W decay creating a sharp jacobian peak
 - use it to normalize the background predictions!

Lepton+jets

- Simulation seems to tell us that MET and M_T are not strongly correlated
- In the absence of signal the method works perfectly

	$\not\!$	$\not\!$
True BG	203 ± 6	12.4 ± 1.6
Estimated BG	190 ± 8	$\textbf{9.4}\pm\textbf{0.7}$
Ratio(Est./True)	0.93 ± 0.05	0.76 ± 0.11

 The problem is that "background" samples are contaminated with signal – reduced sensitivity...

•	$E_T > 100 \text{ GeV}$	$E_T > 300 \text{ GeV}$
True BG	203 ± 6	12.4 ± 1.6
Estimated BG	296 ± 10	$\textbf{33.3} \pm \textbf{1.4}$
True BG+SUSY	653 ± 8	245 ± 4

Yuri Gershtein (Rutgers)

APS 2009 April Meeting

Start-up and Commissioning

- It is a large and difficult task to commission detectors like CMS and ATLAS
- But by the time the beam collisions come we will have operated the detectors for almost two years
 - system stabilities and noise measured
 - trackers partially aligned
 - magnetic fields mapped out with cosmic muons
 - billions of events acquired, reconstructed, distributed, rereconstructed, and compared to detector simulation
 - countless problems solved
- The start-up is likely to be very different from the Run II Tevatron, where detector and accelerator were brought up ~ simultaneously

Cosmics Event Example: ATLAS

5/4/2009

Yuri Gershtein (Rutgers) APS 2009 April Meeting

Cosmics Event Example: CMS

5/4/2009

Yuri Gershtein (Rutgers) APS 2009 April Meeting

Tracker Alignment

- alignment algorithms work
- achieved precision is already better then considered MC scenario after 10 pb⁻¹ of data

One Beam

5/4/2009

Yuri Gershtein (Rutgers)

APS 2009 April Meeting

. . ×

Atlantis

Summary

- LHC operations with two beams will start this year!
- Detectors had more then a year to iron out problems – may be able to produce physics grade results soon after collisions
- Methods for early analysis are improving **Stay tuned!!**