STATE OF HEAVY FLAVOR KAREN GIBSON, UNIVERSITY OF PITTSBURGH

Denver, CO

APS April Meeting

May 3, 2009

Flavor Physics Program at Tevatron Has Been Tremendously Successful!

- Complements excellent programs of BABAR and Belle experiments at the B-factories
 - e⁺e⁻ colliders produce B's at the Y(4S) and Y(5S)
- Many unique measurements made at Tevatron
 - Observation of B_s mixing
 - \square CP violation in $B_s \rightarrow J/\psi \phi$
 - Discovery of b-baryons
- Several measurements in B⁰ and B⁺ systems are approaching sensitivity of BABAR and Belle
 - e.g. lifetimes, direct CPV

A Special Time for TeV(atron)

- Tevatron can contribute uniquely to flavor physics for the next few years
 - Transition between first run of B factories, LHC experiments
- Consider Tevatron flavor physics program present and future
 - Highlight recent results (from 2008 & 2009)
 - Anticipate results to come
 - Significant statistics can be added to many existing measurements before the end of Run II!

Tevatron Performance Has Been Excellent!

Delivered > 6 fb⁻¹ of integrated luminosity
 CDF and D0 experiments have collected >5 fb⁻¹ each
 Expect ~9 fb⁻¹ delivered integrated luminosity through 2010

CDF and D0 Detectors Have Different Strengths in Detecting B Hadrons

Strong tracking system, ability to trigger on displaced tracks ⇒ Good mass resolution, high statistics in non-leptonic decays Excellent calorimetry, muon id, reverse direction of B field

 \Rightarrow Large samples of semi-leptonic and forward decays, good direct CPV res.

Main Categories of Flavor Physics Results Discussed Today

Production

Birth of B hadrons

Lifetimes

Death of B hadrons

CP Violation & Rare Decays

The curious things in between

Sandro Botticelli The Birth of Venus c. 1482-1486

Search for New Particles and Measure Production Rates of Known Particles

- Look for things that we think should be there and also for things that shouldn't
 - Can find some surprises
 - e.g. X, Y, Z charm states
 - Many b-baryons have not been observed until Run II!
 - Observed $\Sigma_{\rm b}^{\pm}$ (2006), $\Xi_{\rm b}^{-}$ (2007) and recently $\Omega_{\rm b}^{-}$ (2008)
 - Measure production rates and crosssections
 - Rel. fragmentation fractions, $\sigma(B^+)$, $\sigma(B_c^+) \times BR(B_c^+) / \sigma(B^+) \times BR(B^+)$

J = 1/2 b Baryons

Evidence for New Y(4140) State

- Find evidence for new state Y(4140) in 2.7 fb⁻¹ of int. lumi.
 - Observed in $B^+ \rightarrow Y(4140)K^+$ $Y(4140) \rightarrow J/\psi\phi$ ■ $J/\psi \rightarrow \mu^+\mu^-$ ■ $\phi \rightarrow K^+K^-$
- Builds on previous discoveries of charm-like states at Belle/BaBar
 - e.g. X(3872), Y(3930)
 - D*D molecule? 4-quark state?

arXiv:0903.2229, submitted to PRL

Observe 3.8σ Significant Excess

Observe 14±5 events
 Calculate significance to be 3.8σ
 Near J/ψφ threshold
 Similar to Y(3930)→J/ψω

Assuming S-wave Breit-Wigner $m = 4143.0 \pm 2.9 \text{ (stat)} \pm 1.2 \text{ (syst)} \text{ MeV/c}^2$ $\Gamma = 11.7 + 8.3 - 5.0 \text{ (stat)} \pm 3.7 \text{ (syst)} \text{ MeV/c}^2$

Many b-baryons Have Been Observed Since the Beginning of Run II!

mass $[GeV/c^2]$

Observation of $\Omega_{\rm b}{}^-$ Baryon

 Announced by D0 on Aug. 29, 2008
 Observation made with 1.3 fb⁻¹ of data

> ■ Builds on previous observation of Ξ_b⁻

Phys. Rev. Lett. 101, 232002 (2008).

Observe 17.8 ± 4.9 (stat) ± 0.8 (syst) events \square m = 6.165 ± 0.010(stat) ± 0.013 (syst) GeV/c² Events / (0.04 GeV/c² Expect $5.94-6.12 \text{ GeV}/c^2$ D0, 1.3 fb⁻¹ Data from theory 15 Fit Calculate significance of 5.4σ 6.2 5.8 $6.\overline{4}$ 6.6 $M(\Omega_b^2)$ (GeV/c²) $\frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-)Br(\Xi_b^- \to J/\psi \ \Xi^-)} = 0.80 \pm 0.32(stat)_{-0.22}^{+0.14}(syst)$

Have Observed Most Single b-baryons!

mass $[GeV/c^2]$

Measurement of Relative B_c⁺ Cross Section Updated to 1 fb⁻¹

Measure

$$\frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi K^+)}$$

Need to model B⁺, B_c⁺ p_T spectrum to calculate relative efficiency between decays

Find Good Agreement with Previous B_c⁺ Cross-section Measurement

16

Agrees well with previous results

Systematic uncertainty is significantly improved

Result	pT(B)	R
$B_c^+ \rightarrow J/\psi e^+ v X$ (Run II, 360 pb ⁻¹)	>6 GeV/c	0.245 \pm 0.045 (st) \pm 0.066 (sys) $^{+0.080}_{-0.032}$ (lt)
$B_c^+ \rightarrow J/\psi \mu^+ \nu X$ (Run II, 360 pb ⁻¹)	>4 GeV/c	0.282 ±0.038 (st) ±0.035 (y) ±0.065 (a)

Jacques-Louis David

Death of Marat c. 1793

Why Measure Lifetimes?

Heavy Flavor Averaging Group (HFAG) - 2006

Test HQE predictions

Have previously seen1-2\sigma discrepancies between lifetime predictions and measurements in B⁰_s, Λ^{0}_{b}

Expect $\tau(B^+) > \tau(B^0) \approx \tau(B_s^0) > \tau(\Lambda_b^0) \gg \tau(B_c^+)$

- Because they're there?
 - Fundamental quantity, give complete picture of B's
 - Useful for other measurements (e.g. b-tagging)

B_s⁰ Lifetime Now Agrees with HQE

Partially reco. decays double statistics!

 $c\tau(B_s^{0}) = 455 \pm 12$ (stat.) ± 7 (syst.) μm

Compatible with HQE predictions that $c\tau(B^0) \approx c\tau(B_s^0)$ $(c\tau(B^0) = 458.7 \pm 2.7, PDG 2008)$

Data collected with displaced track trigger
 ⇒ must correct for trigger bias (use Monte Carlo)
 www-cdf.fnal.gov/physics/new/bottom/080207.blessed-bs-lifetime/

B_c⁺ Lifetime Agrees with Theoretical Predictions

www-cdf.fnal.gov/physics/new/bottom/ 080327.blessed-BC_LT_SemiLeptonic/ CDF: $c\tau(B_c^{+}) = 142 \pm 15$ (stat) ± 6 (syst) μ m D0: $c\tau(B_c^{+}) = 134.3 \pm 11$ (stat) ± 10 (syst) μ m Phys. Rev. Lett. 102, 092001 (2009)

$\Lambda_{\rm b}^{\ 0}$ Lifetime Question Closer to Resolution

Measure lifetime in displaced track sample www-cdf.fnal.gov/physics/new/bottom/080703.blessed-lblcpi-ct/

New Measurements Are in Good Agreement with Predicted Lifetimes

New measurements of lifetime are in good agreement with theoretical predictions!

22

²³ CP Violation & Rare Decays

Francisco Goya The Third of May 1808 1814

CP Violation

24

CP violation is the non-conservation of charge and parity quantum numbers

 \neq

Rate of

Rate of

Known Amount of CP Violation is Unable to Explain Matter-Antimatter Asymmetry

- Present sources of CP violation can't account for the amount of matter we observe in the universe!
- Important to search for new sources of CP violation in places we don't expect
 - Can indicate presence of new particles or forces
 - Maybe with much higher masses than we can observe directly at LHC!

There Are Three Types of CP Violation That Can Be Investigated

- □ Decay of hadrons ↔ direct CPV
 - Only type of CPV for charged mesons

- Mixing of neutral mesons \leftrightarrow indirect CPV
- Semi-leptonic decays of neutral meson
- Interference between decays with and without Measured precisely by BABAR and Belle
 - $\blacksquare B^{0} \rightarrow J/\psi \ K_{s}^{\ 0} \Rightarrow sin 2\beta^{\prime}$

 $\blacksquare B_s^{\ 0} \rightarrow J/\psi \phi \Rightarrow sin 2\beta_s$

Use flavor tagging for more powerful measurement of CP phases!

Mixing and Decay in B_s^{0}

Mixing between particle and anti-particle occurs through the loop processes

Mixing and Decay in B_s^0

28

Mixing of B_s^{0} mesons is governed by Schrodinger eqn.

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} \Longrightarrow \begin{array}{l} |B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \\ |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle \\ \end{bmatrix}$$

 $B_s^0 \rightarrow J/\psi \phi$ Decays Are A Good Place to Look for New Physics

□ Decays of $B_s^0 \rightarrow J/\psi \phi$ gives access to CP violating phase predicted to be nearly zero in Standard Model

$$\beta_{s}^{J/\psi\varphi} = \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right) \sim 0.02$$

□ Large phase in b→s transition could lead to significant non-zero CP phase

New physics could produce large CP phase!

G. Hou et al suggest that t' quark w/mass ${\sim}300~GeV/c^2-1~TeV/c^2$ would give $\beta_s{\sim}0.5$

CDF Observes Discrepancy with SM in Flavor-Tagged $B_s^0 \rightarrow J/\psi\phi$

- □ Find 1.8σ (p-value = 7%) discrepancy with SM prediction for $β_s^{J/ψφ}$ = 0.02, $ΔΓ_s$ = 0.096
 - Expect further improvement in statistical precision shortly!

www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged_BsJPsiPhi_update_prelim/

Similar Discrepancy Observed by D0 in Flavor-Tagged $B_s^0 \rightarrow J/\psi\phi$

D0 result very similar to CDF's!

Discrepancy w/SM is 1.7 σ , p-value = 0.085

Trend is identical, $\phi_{s}^{J/\psi\phi} \equiv -2\beta_{s}$

D0 finds agreement in strong phase between $B_s^0 \rightarrow J/\psi\phi$ (assuming $\phi_s^{J/\psi\phi} = 0$) and $B^0 \rightarrow J/\psi K^{*0}$ \Rightarrow Use phases in $B^0 \rightarrow J/\psi K^{*0}$ to choose one of two solutions?

More Significant Discrepancy in Combined $B_s^0 \rightarrow J/\psi \phi$ Result

arXiv:0808.1297v1

New CDF result not included in combination!

Expect updates to both CDF and D0 results soon!

$\mathscr{B}(B_s^{0} \rightarrow D_s^{(*)} D_s^{(*)})$ Also Gives Access to CP-even Width Difference

D0 Run II (2.8 fb⁻¹) D0 Run II (2.8 fb⁻¹) 70 70± Candidates / (0.03 GeV/c²) Candidates / (0.0045 GeV/c²) **(b) (a)** 60 50 40 30 30 20 20 10 10 **9**.7 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 **2.1 2.2 2.3 m**(φπ) (GeV/c²) 1.8 1.9 2.0 m(KK) (GeV/c²)

 \Box Measure branching ratio to determine $\Delta \Gamma_{s}^{CP}$ (2.8 fb⁻¹)

• Search for one $D_s \rightarrow \phi \pi$, other to $D_s \rightarrow \phi \mu \nu$

$$2\mathscr{B}(B_s^0 \to D_s^{(*)} D_s^{(*)}) \cong \Delta \Gamma_s^{CP} \left[\frac{\frac{1}{1-2x_f} + \cos \varphi_s}{2\Gamma_L} + \frac{\frac{1}{1-2x_f} - \cos \varphi_s}{2\Gamma_H} \right]$$

 $\Delta\Gamma_{s}^{CP}/\Gamma_{s}$ Measured in $B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}$ Consistent with World Average

Measure

 $\mathcal{B}(B_s^0 \to D_s^{(*)}D_s^{(*)}) = 0.035 \pm 0.010(stat) \pm 0.008(syst) \pm 0.007(\mathcal{B})$ with 3.2 σ significance (p-value = 0.0012)

arXiv:0904.3907

Measurement Improves Uncertainty by Factor of 2!

Extract asymmetry with un-binned maximum likelihood fit

$$\Gamma_{B_s^0 \to \bar{f}} = N_f \left| \overline{A}_{\bar{f}} \right|^2 \frac{1}{2} \left(1 - a_{fs}^s \right) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - \cos(\Delta m_s t) \right]$$

$$\Gamma_{\overline{B}_s^0 \to f} = N_f \left| \overline{A}_{\bar{f}} \right|^2 \frac{1}{2} \left(1 + a_{fs}^s \right) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - \cos(\Delta m_s t) \right]$$

🗆 Find

$$a_{fs}^{s} = \left[-1.7 \pm 9.1(stat)^{+1.2}_{-2.3}(syst)\right] \times 10^{-3}$$

Uncertainties improved by factor of 2 over previous direct measurement!

Standard model prediction: $a_{fs}^s = (0.021 \pm 0.006) \times 10^{-3}$

Rare Decays Help Search for Flavor Changing Neutral Currents

- □ Search for processes like □ $B^0 \rightarrow \mu^+ \mu^-$, $B_s^0 \rightarrow \mu^+ \mu^-$ □ $D^0 \rightarrow \mu^+ \mu^-$
- Standard Model processes are extremely rare
 B~10⁻⁹-10⁻¹³
- New physics (e.g. SUSY) predicts new sources of FCNC
- Some processes are forbidden in SM

■
$$B^0, B_s^0 \rightarrow e^+ \mu^-$$

⇒ leptoquarks

Examples of Rare Decay Processes

38

□ SM processes $\downarrow_{s} \downarrow_{w} \downarrow_{w} \downarrow_{u} \downarrow_{\mu} \downarrow_{\mu$

New physics processes

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Branching Ratios Approaching SM Predictions!

□ $B_s^0 \rightarrow \mu^+ \mu^-$ @ 95% CL □ CDF (2 fb⁻¹): $\mathcal{B} < 5.8 \times 10^{-8}$ □ D0 (5 fb⁻¹) expected: $\mathcal{B} < 5.3 \times 10^{-8}$ □ $B^0 \rightarrow \mu^+ \mu^-$ @ 95% CL □ CDF (2 fb⁻¹): $\mathcal{B} < 1.8 \times 10^{-8}$

■
$$B_s^{0} \rightarrow e^+ \mu^- @ 95\% CL$$

■ CDF (2 fb⁻¹):
 $\mathcal{B} < 2.6 \times 10^{-7}$
■ $B^0 \rightarrow e^+ \mu^- @ 95\% CL$
■ CDF (2 fb⁻¹):
 $\mathcal{B} < 7.9 \times 10^{-8}$

 $\Rightarrow m(LQ, B_s^{0}) > 44.6 \text{ TeV}$ m(LQ, B⁰) > 55.7 TeV □ $D^{0} \rightarrow \mu^{+}\mu^{-}$ @ 95% CL □ CDF (360 pb⁻¹): $\mathcal{B} < 5.3 \times 10^{-7}$ / Predicted rate ~10⁻¹³

⁴¹ Looking to the Future

Neo Rauch The Next Move 2007

Many Interesting New and Updated Measurements to Come!

- Updates to CP violation measurements
 - Expect 2-4x higher yield depending on measurement
 - More flavor-tagged CP violation results
- Updated lifetimes with higher statistics
 - □ Updated $B \rightarrow J/\psi X$ lifetimes with 2x more data
 - Will give most precise B^+ , Λ_b^0 lifetimes to date
- Observation of new states?

Valuable Contributions to Study of Bottom and Charm Hadrons Made at Tevatron

- Exciting time for flavor physics at the Tevatron!
 - Many significant contributions to knowledge of B hadrons has been made
 - Expect many interesting, important updates in the next few years!

Y(4140) Selection

- □ Optimize $S/\sqrt{(S+B)}$
 - □ L_{xy}(B⁺) >500 μm
 - Log likelihood ratio of kaon
 > 0.2
 - Observe clear sideband
 subtracted φ signal
 - Fit with P-wave relativistic Breit-Wigner
 - Require events to have
 K⁺K⁻ mass consistent with φ

□ $|m(K^+K^-)-m(\phi)| < 7 \text{ MeV}/c^2$

46

- See uniform
 distribution in Dalitz
 decays
 - All events are within kinematically allowed region determined from MC simulation

- First observed by Belle collaboration in 2003
- \square Observed in decay X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$
 - Nature of particle is still unknown
 - D*D "molecule"? 4-quark state?
- Search for mass splitting, measure absolute mass
 - Observation of mass splitting offers evidence of tetraquark
 - No mass splitting makes absolute mass interesting
 - Checks possibility of bound-state D*D

www-cdf.fnal.gov/physics/new/bottom/080724.blessed-X-Mass/

- □ Fit mass with Breit-Wigner convolved with resolution
 - Result consistent with no mass splitting
 - Assign upper limit CL
 - $\Delta m(X(3872)) < 3.2 (3.6) \text{ MeV/c}^2 \text{ at } 90\% (95\%) \text{ C.L.}$

Most Precise Measurement of X(3872) Mass

49

 $m(X(3872)) = 3871.61 + 0.16 (stat) + 0.19 (syst) MeV/c^2$

Measured mass is below D*D threshold, although uncertainties are within threshold \Rightarrow D*D bound state is still a possibility

Selection of X(3872)

Use ANN to select events

Optimize selection on Monte Carlo (signal) and mass sidebands (background)

Mass Splitting of X(3872)

Model resolution with Monte Carlo simulation

Width scale floats freely in fit

Previous Observation of $\Xi_{\rm b}^{\ -}$

$$\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-} \rightarrow [\mu^{+}\mu^{-}][\Lambda^{0}\pi^{-}],$$

$$\Lambda^{0} \rightarrow p\pi^{-}$$

 Ω^- Reconstruction Improved with Special Selection Techniques

□ Use boosted decision tree (BDT) to improve identification of Ω⁻ signal

Re-process data with higher IP req. to increase Ξ^-/Ω^- acceptance!

Cross-Checks of $\Omega_{\rm b}^{-}$ Signal (1)

54

 Check WS events and mass sidebands for spurious excesses
 None observed!

- \square Check lifetime distribution of $\Omega_{\rm b}^{-}$ candidate events
 - Consistent with B hadron lifetime

Cut-based Analysis of $\Omega_{\rm b}^{-}$

Alternatively, try using simpler cut-based analysis

■ Find 15.7 ± 5.3 (stat) events

Signal significance is 3.9σ

 Evaluate significance from likelihood ratio of background only hypothesis (L_B) to signal + background hypothesis (L_{S+B})

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)}$$

New Technique Used to Measure B⁺ Lifetime

2500

3000

Measured in displaced track sample

Novel method for correcting for trigger bias without

Use acceptance function to correct for trigger bias

on event-by-event basis $c\tau(B^+) = 498.2 \pm 6.8$ (stat.) ± 4.5 (syst.) μ m, $(c\tau(B^+) = 491.1 \pm 3.3 \ \mu m, PDG \ 2008)$

www-cdf.fnal.gov/physics/new/bottom/080612.blessed-MCfree Blifetime/

B_s⁰ Mass Fit in Lifetime Measurement

Perform simultaneous
 unbinned maximum
 likelihood fit to mass and
 lifetime

- Use partially reconstucted decays to double statistics
 - e.g. $B_s^0 \rightarrow D_s^- \rho^+ (\rightarrow \pi^0 \pi^+)$
- $\square \sim 2200 B_s^0$ candidates

Comparison of B_s⁰ Lifetime with Prev. Results

 B_s⁰ lifetime is higher than recently measured B_s⁰ lifetimes in flavor-specific decay modes

Expect 50% of Γ_L, Γ_H in flavor-specific modes

B_c⁺ Lifetime Agrees with Theoretical Predictions

 $B_{c}^{+} \mu^{+} \mu^{-} J/\psi$

arXiv:0805.2614, submitted to PRL

□ Simultaneously fit mass and lifetime $c\tau(B_c^+) = 134.3 \pm 11 \text{ (stat)} \pm 10 \text{ (syst)} \mu \text{m}$

B⁺_c Lifetime Agrees with Theoretical Predictions and DO

www-cdf.fnal.gov/physics/new/bottom/080327.blessed-BC LT SemiLeptonic/

Pseudo-Proper Decay Length (µm)

100

150

200

250

300

 $B_c c\tau (\mu m)$

□ Fit lifetime only, use mass as cross-check

Determine all background shapes and normalizations from data if possible, MC otherwise \Rightarrow constrain in fit

ct(B_c^+ \rightarrow J/\psi e^+ X) = 122 \, {}^{+18}_{-16}(stat) μm

□ Fit lifetime only, use mass as cross-check

Determine all background shapes and normalizations from data if possible, MC otherwise \Rightarrow constrain in fit

 $c\tau(B_{c}^{~+}\rightarrow J/\psi\mu^{+}X$) = 179 $^{+33}_{-27}$ (stat) μm

 \Box Combine -2InL_e, -2InL_µ

Unitarity Relations in B^0/B_s^0

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \qquad V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

New Physics in B_s⁰ Decays

67

B_s⁰ - B_s⁰ oscillations observed by CDF
 Mixing frequency ∆m_s now very well-measured
 Precisely determines |M₁₂| - in good agreement w/SM pred.

Phase of mixing amplitude is still very poorly

$$\begin{split} \mathsf{M}_{12} &= |\mathsf{M}_{12}| \, \mathsf{e}^{\mathsf{i}\phi_{\mathsf{m}}}\text{,}\\ \text{where } \phi_{\mathsf{m}} &= \mathsf{arg}(|\mathsf{V}_{\mathsf{tb}}\mathsf{V}_{\mathsf{ts}}^{*})^{2} \end{split}$$

New physics could produce large CP phase! $\Delta\Gamma/\Gamma$ Measured in $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$ Consistent with World Average

 \square Measure branching ratio to determine $\Delta\Gamma$ (2.8 fb⁻¹)

 \blacksquare Search for one $\mathsf{D}_{\mathsf{s}}{\rightarrow}\phi\pi$, other to $\mathsf{D}_{\mathsf{s}}{\rightarrow}\phi\mu\nu$

Under certain theoretical assumptions, $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)} D_s^{(*)}$ is nearly CP even

$$2Br(B_s \to D_s^{(*)}D_s^{(*)}) \simeq \Delta\Gamma_s^{CP} \left[\frac{1+\cos\phi_s}{2\Gamma_L} + \frac{1-\cos\phi_s}{2\Gamma_H}\right]$$

Find

$$Br(B_s^0 \to D_s^{(*)}D_s^{(*)}) = 0.042 \pm 0.015 (\text{stat}) \pm 0.017 (\text{syst})$$

Assuming SM, $\phi_s = 0$, $\Delta \Gamma^{CP} = \Delta \Gamma$

$$\frac{\Delta \Gamma_s}{\Gamma_s} = 0.088 \pm 0.030 (\text{stat}) \pm 0.036 (\text{syst})$$

Consistent with WA (2007) ΔΓ/Γ= 0.096 ^{+ 0.048}-0.053

www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B53/

New Measurement of Direct CPV in B⁺ \rightarrow J/ ψ K⁺(π ⁺)

PRL 100, 211802 (2008) DATA D0 Run II, 2.8 fb⁻¹ 12000 J/ψK SM predicts $J/\psi\pi$ Entries/0.03 [GeV/c²] 0009 8 0000 8 0000 0008 J/wK* $A_{CP}(B^+ \rightarrow J/\psi K^+) \simeq 0.003$ BKG TOTAL FIT 6000 NP might produce asymmetries up to ~ 0.01 2000 0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 m(J/ψK) [GeV/c²]

 $A_{CP}(B^{+} \to J/\psi K^{+}(\pi^{+})) = \frac{N(B^{-} \to J/\psi K^{-}(\pi^{-})) - N(B^{+} \to J/\psi K^{+}(\pi^{+}))}{N(B^{-} \to J/\psi K^{-}(\pi^{-})) + N(B^{+} \to J/\psi K^{+}(\pi^{+}))}$

 $\begin{array}{l} \mathsf{A}_{\mathsf{CP}}(\mathsf{B}^+\!\!\rightarrow\!\!\mathsf{J}/\psi\mathsf{K}^+) &= +0.0075\pm0.0061 \text{ (stat)}\pm0.0027 \text{ (syst)} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{B}^+\!\!\rightarrow\!\!\mathsf{J}/\psi\pi^+) &= -0.09\pm0.08 \text{ (stat)}\pm0.03 \text{ (syst)} \end{array}$