

Jet Production with Vector Bosons and Heavy Flavor at the Tevatron

Sebastian Grinstein

ICREA/IFAE-Barcelona

Results from CDF & D0 Collaborations

APS April Meeting 2009 Denver, CO http://flickr.com/photos/72926532@N00

Outline

- Underlying Event Studies
- Z/W+jets Production
- Experimental Techniques
 b-Jet Identification
- bb Production
- Z+b Production
- W+b/W+c Production
- Final Remarks

High pT QCD Physics at 2 TeV

Big step forward in Run II

- Larger statistics
- Increased pT range
- Measurements in wide rapidity region
- Improvements in jet algorithms
- Inclusion of non-pQCD contributions

W/Z + Jets major background to many measurements and searches

Non-pQCD Contributions

Underlying Event Studies

Goal: improve understanding and modeling of high energy collider events

Define 3 regions in an event, based on the leading jet

- "toward"
- "away"
- "transverse"

"transverse" region

 \rightarrow very sensitive to underlying event

Study (in all regions)

- charged particle density
- pTsum density
- Etsum density

Underlying Event in Drell-Yan and Jet Production

 \rightarrow charged pT sum density

Comparison of the **three regions** in DY:

- "away" region: pT density increases with lepton pair pT
- "transverse", "toward" regions:
 pT density flat with lepton pair pT

Comparison of "transverse" region between jets and DY

- Similar trend in both
- Tuned PYTHIA describes data

 $Z/\gamma^*(-)$ ee) + jet(s)

- Test pQCD predictions and event generators
- Jets: p_T > 20 GeV, |y|<2.5, R=0.5
- Electrons: E_T > 25 GeV, 65 < Mee < 115 GeV

hep-ex/0903.1748

 $Z/\gamma^*(\rightarrow \mu\mu) + jet(s)$

hep-ex/0808.1296

- Data described by NLO pQCD
- PYTHIA and ALPGEN below the data (consistent with LO prediction)
- SHERPA in between LO and NLO predictions (better at large Pt)

Good agreement with pQCD NLO calculation (includes non-pQCD effects) At low P_T Monte Carlo needs a better modeling of UE (ALPGEN+PYTHIA)

Vector Boson + HF Jets

Important for physics program at Tevatron

- For QCD
 - Test perturbative QCD predictions
 - W/Z(γ) direct probe of hard scattering dynamics
 - Sensitive to PDFs HF content
- Understand Background
 - W/Z+HF production is bkgd for: ttbar, single top, and searches like Higgs, SUSY...
 - Challenging to accurately simulate need to validate data

Dijet mass plus

b-Jet Identification

Lifetime taggers:

- Most common b-tagging technique exploits long lifetime of b-hadrons
- Secondary vertex:
 - \rightarrow Select tracks in jet
 - → Identify displaced tracks (not from primary vertex)
 - → Make secondary vertex with displaced tracks
 - → If large transverse displacement (Lxy) jet is b-tagged

Soft Lepton Taggers:

Identify soft leptons inside jets
 (~20% semi-leptonic branching fraction)

Need to characterize tagger: efficiency and mistag rate (light flavor tags)

b-Jet Identification (cont'd)

Lifetime tagger, different operating points:

- Loose: optimized for efficiency (e.g. double tagged analyses)
- Tight: optimized for purity (e.g. top cross section)
- Ultra-tight: very high purity (reduce mistags)

Measure phi correlation to get insight on contribution of LO and NLO terms.

Secondary vertex mass used to separate bottom from (uds + c) contributions

Dijet Production (bb) 2 jets with ET > 35(32) GeVand |y| < 1.2

Large background for many analyses

- SM Higgs (WH) production
- Single top quark production
- $t\bar{t}$ production

W+b-jets production

- W
 ightarrow / v (/= e_{μ}) selection:
 - $e: E_T > 20 \text{ GeV}, |\eta| < 1.1$
 - μ: p_T > 20 GeV/c, |η| < 1.0
 - v: Missing $E_{T_{i}}$ MET > 25 GeV
- 1 or 2 jets in final state
- b-Jet selection:
 - Cone algorithm, R= 0.4
 - $E_T > 20 \text{ GeV}, |\eta| < 2.0$
 - b-identification: "ultratight"

W+b-jets cross section:

$$\sigma_{W+bjets} \cdot Br = \frac{N_{b-tags} \cdot f^{bjets} - N_{bkg}^{bjets}}{L \times A \times \varepsilon}$$

$$N_{b-tags} : \text{number of } b-tags$$

$$f^{bjets} : b-\text{ jet purity in } b-tag \text{ sample}$$

$$N_{bkg}^{bjets} : \text{number of } tagged b-\text{ jets not from } W+b\overline{b}$$

W+b-jets production

$$\sigma_{W+bjets} \cdot Br = \frac{N_{b-tags} \cdot f^{bjets} - N_{bkg}^{bjets}}{L \times A \times \varepsilon}$$

- Major b-jets bkgd. (S/B ~ 3/1):
 - ttbar (40% of total bkgd)
 - single top (30%)
 - Fake W(15%)
 - *WZ*(5%)
- Measurement:
 σ·BR = 2.74 ± 0.27(stat) ± 0.42(syst) pb
 (p_T^{eµ}>20 GeV/c, |η^{eµ}|<1.1, p_T^v>25 GeV,
 E_T^{bjet}>20 GeV, |η^{bjet}|<2.0)
- Alpgen (LO) prediction: $\sigma \cdot BR = 0.78 \text{ pb}$

The measurement x3.5 larger than the Alpgen prediction. Waiting for other theoretical predictions (MCFM NLO etc.)

W + Single c Production

Motivation:

- Probe s-content of proton at high Q²
 - $g+s \sim 0.9, g+d \sim 0.1.$
- Important BG for top quark studies, searches for Higgs, stop...

<u>Strategy:</u>

- $W \rightarrow I + v$ selected by high $p_T e_{\mu} + MET$
- Charm-jet identified by the soft lepton tagging (SLT) algorithm.
- Utilize charge correlation between W lepton and SLT lepton.
 - W+c production: opposite sign (OS)
 - In W+bb(cc), same sign (SS) ~ OS.

$$\sigma_{W+c} \times Br(W \to l\nu) = \frac{N_{measured}^{OS-SS} - N_{bkg}^{OS-SS}}{L \times A \times \varepsilon}$$

- Main OS-SS backgrounds
 - Fake W
 - W+light jets
 - Drell-Yan

W + Single cProduction

• Measure the ratio $\sigma W+c/\sigma W+jets$. Many systematic uncertainties cancel.

In reasonable agreement

 $\sigma_{Wc} x Br(W \to l\nu) = 9.8(stat.) \pm 2.8^{+1.4}_{-1.6}(syst.) pb$ NLO: 11.0^{+1.4}_{-3.0} pb (p_{Tc} > 20 GeV/c, |\eta_c|<1.5)

In good agreement

Final Notes

- Proper Modeling of the Underlying Event
- Z/W+jet(s): good agreement with predictions, results test background estimations in searches for new physics
- Good understanding of Vector Boson and HF jets production critical for Tevatron and LHC
- First Z/W+HF measurements start challenging large theoretical uncertainties
- W+charm well described by recent NLO predictions
- W+bottom does not agree well with predictions
- Tevatron promises ~8 fb⁻¹ by End 2009 (further improvements likely)
- First LHC physics data by End 2009

"Just checking."