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Lattice QCD
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 Infinite continuum: 
uncountably many d.o.f.

 Infinite lattice: countably 
many; used to define QFT

 Finite lattice: can evaluate 
integrals on a computer; 
dimension ~ 108

a

L = NSa

L 4 =
 N

4a

Lattice Gauge Theory
〈•〉 =

1
Z

Z
DUDψDψ̄exp(−S) [•]
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Some Jargon
 QCD observables (quark integrals by hand): 





 Quenched means replace det with 1.

 Unquenched means not to do that.

 Partially quenched doesn’t mean “nf too small” but 
mval ≠ msea, or even D/ val ≠ D/ sea (“mixed action”).

〈•〉 =
1
Z

Z
DU

n f

∏
f =1

det(D/+m f )exp
(
−Sgauge

)
[•]
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Sea Quarks
 Staggered quarks, with rooted determinant, O(a2).

 Wilson quarks, O(a):

 tree or nonperturbatively O(a) improved;

 twisted mass term—auto O(a) improvement.

 Ginsparg-Wilson (domain wall or overlap), O(a2):

 D/γ5 + γ5 D/  = 2a D/ 2   implemented w/ sign(D/ W).
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 Many numerical simulations with sea quarks are 
called (perhaps misleadingly) “full QCD.”

 nf = 2: with same mass, omitting strange sea;

 nf = 3: may (or may not) imply 3 of same mass;

 nf = 2+1: strange sea + two as light as possible;

 nf = 2+1+1: add charmed sea to 2+1.

 “Full QCD” can also mean mval = msea, D/ val = D/ sea.
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Correlators
 Two-point functions for masses 




 Two-point functions for decay constants: 



 Three-point functions for form factors, mixing: 

〈π(t)π†(0)〉 = ∑
n

|〈0|π̂|πn〉|2 exp(−mπnt)

〈J(t)π†(0)〉 = ∑
n
〈0|Ĵ|πn〉〈πn|π̂†|0〉exp(−mπnt)

〈π(t)J(u)B†(0)〉 = ∑
mn
〈0|π̂|πm〉〈πn|Ĵ|Bm〉〈Bm|B̂†|0〉

×exp[−mπn(t−u)−mBm u]

π(t) = ψ̄uγ5Sψd :
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 Lattice gauge theory is now a broad field:

 SM parameters and flavor physics;

 nucleon properties and excited baryons;

 hadron-hadron interactions;

 QCD thermodynamics;

 walking QCD, super YM, Higgs, BSM.

 USQCD overview, arXiv:0807.2220.

Scope of this talk
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Hadron Spectrum

9



2+1 Sea Quarks!
HPQCD, MILC, Fermilab Lattice, hep-lat/0304004
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Predictions
 Semileptonic form factor 

for D → Klν

 Mass of Bc meson

 Charmed decay constants
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D → Klν
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Hadron Spectrum 1
MILC Col’n, PRD 70, 094505 (2004); arXiv:0903.3598

 a = 0.12 & 0.09 fm

 O(a2) staggered

 FAT7 smearing

 2ml < mq < ms

 π, K, Υ(1P) input

QCD postdicts the low-lying hadron masses!
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Hadron Spectrum 2
PACS-CS Collaboration, PRD 79, 034503 (2009).

 a = 0.091 fm

 NP O(a) Wilson

 no smearing

 mq ≈ 1.3ml

 π, K, Ω input

QCD postdicts the low-lying hadron masses!
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cf. earlier work by CP-PACS
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Hadron Spectrum 3
BMW Collaboration: Science 322, 1224 (2008).

 a = 0.125, 0.085, 
& 0.065 fm

 tree O(a) Wilson

 6× stout smearing

 2ml < mq < 1.7ms

 π, K, Ξ input

QCD postdicts the low-lying hadron masses!
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m = E/c2
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m = E/c2
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QCD Parameters
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Quark Masses & αs

 Light quark masses (MILC+HPQCD): 




with two-loop matching.

 Heavy quark masses (next slides).

 Strong coupling αs (after that).

mu = 1.9 ± 0.2 MeV,

md = 4.6 ± 0.3 MeV,

ms = 88 ± 5 MeV.
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Charmed Quark Mass
HPQCD+Karlsruhe, arXiv:0805.2999

 Moments of charmonium correlators: 



computed with lattice QCD and with continuum 
perturbation theory yield quark mass and αs 
[Bochkarev & de Forcrand, hep-lat/9505025].

 Any channel would do; like using measurements of 
e+e– → hadrons for vector-vector channel.

Gn = ∑
x,t

tn〈mcc̄γ5c(x, t)mcc̄γ5c(0,0)〉
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 Several tactics to reduce discretization effects 
to O(αs(mca)2,4,…).

 HPQCD: HISQ valence on 2+1 asqtad sea, 
with a = 0.15, 0.12, 0.09, 0.06 fm.

 Karlsruhe: PT for moments through αs
3.

 From G6 & G8 of j5j5: mc(mc) = 1.268(9) GeV.

 Compare e+e–  jµjµ: mc(mc) = 1.268(12) GeV.
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µ = 3 GeV
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 Charmonium moments:

 αs = 0.1174(12)

 Wilson loops:

 αs = 0.1183(8), HPQCD, arXiv:0807.1687;

 αs = 0.1192(11), Maltman, arXiv:0807.2020;

 αs = 0.1185(9), PDG non-lat average (2008).

Strong Coupling αs
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Flavor Physics
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CKM UT Now
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CKM UT 2014
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Scope of this talk
 Neutral meson mixing: K, B, Bs.

 Semileptonic form factors:

 K → πlν for |Vus|: RBC+UKQCD, 2007

 D → Klν, D → πlν: Fermilab+MILC, 2004

 B → D*lν for |Vcb|; B → πlν for |Vub|

 Leptonic decay constants: fπ, fK, fD, fDs, fB.
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|Vcb|
alia et Jack Laiho et al., arXiv:0808.2519

 |Vus|, |Vub|, and |Vcb| are the three real parameters of 
the CKM matrix.

 |Vcb| normalizes the unitarity triangle: enters all 
flavor physics.

 Inclusive b → clν: OPE + PT + measured moments.

 Exclusive B → D*lν: (zero recoil) form factor:

F (1) = hA1(1), 〈D∗|Aµ|B〉 = i
√

2mD∗2mBε̄∗µ hA1(1)

27



 Previous quenched calculation (2001): 



used till now with HFAG |Vcb|F(1) to get |Vcb|.

 Three double ratios, devised so that all 
uncertainties scale with F–1, not F.

 Update to 2+1 sea quarks with a single ratio—
more direct & much less computer time.

stats match a χPT nf=0

F (1) = 0.913+0.024
−0.017±0.016+0.003

−0.014
+0.000
−0.016

+0.006
−0.014
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 Also introduces ratios of matrix elements to 
disentangle chiral extrapolation from heavy-
quark discretization effects: 





 Reconstruct

hA1 = hA1(m
fid
x , m̂fid,mfid

s ,a→ 0)
×Rval(mx, m̂′,m′

s,a)×Rsea(m̂′,m′
s,a)

Rval(mx, m̂′,m′
s,a) :=

hA1(mx, m̂′,m′
s,a)

hA1(mfid
x , m̂′,m′

s,a)
,

Rsea(m̂′,m′
s,a) :=

hA1(m
fid
x , m̂′,m′

s,a)
hA1(mfid

x , m̂fid,mfid
s ,a)

.
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|Vub|
alia et Ruth Van de Water, arXiv:0811.3640

 |Vus|, |Vub|, and |Vcb| are the three real parameters of 
the CKM matrix.

 |Vub| gives a tree constraint comparable to sin 2β.

 Inclusive b → ulν: keep control of OPE (or shape 
functions, or ...) in region with no charm.

 Exclusive B → πlν: form factor f+(q2)

〈π|V µ
⊥|B〉 = (pB + pπ)

µ
⊥ f+(q2), q · p⊥ = 0
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 Problem to determine |Vub|:

 lattice best when pπ small, so q2 ≈ q2max,

 but event rate highest when q2 ≈ 0.

 Until now: find least bad q2 of both worlds, or 
introduce Ansatz for q2 dependence.

 Here: a model independent simultaneous fit.
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 Let 

inspired by unitarity. 


  




 For B → πlν kinematics –0.34 < z < 0.22.

X XXXXXX

q2

!

z

z =
√

t+−q2−
√

t+− t0√
t+−q2 +

√
t+− t0

,
t± = (mB±mπ)2

t− < t0 < t+
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 Unitarity guarantees convergent expansion in 
z(t): 





 New approach

 fit lattice & expt separately: compare ak/a0;

 fit lattice & expt together, yielding |Vub|.

P(t)φ(t, t0) f (t) =
∞

∑
k=0

akzk,
N

∑
k=0

a2
k ≤ 1

B* pole asymptotics
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Fermilab Lattice + MILC
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B → πlν

Lattice QCD + 12-bin BaBar measurement.
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|Vcb| & |Vub|
 Using F(1) to get |Vcb|: 




with latest HFAG.

 Compared to inclusive: 



from HFAG/ICHEP08.

 Final z-fit to get |Vub|: 



with BaBar 12-bin data.

 Compared to inclusive: 



from HFAG/ICHEP08.

103|Vcb| = 38.7(9)(10)

Being sorted out for CKM 2008 report.

103|Vub| = 3.38(36)

103|Vub| = (3.76–4.87)±0.35103|Vcb| = 41.6(8)
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fB and BB
Elvira Gamiz et al. [HPQCD], arXiv:0902.1815

 Recent 2+1 calculation of neutral B mixing: 





 Decay constants 1σ lower than in hep-lat/0507015, 
stemming from 2nd, finer lattice spacing.

 Fermilab/MILC (Lat’08 preliminary): 

fBs = 231±15 MeV fBs

√
BBs = 266±18 MeV

fBd = 190±13 MeV fBd

√
BBd = 216±15 MeV

ξ = 1.258±0.033

fB = 195±11 MeV, fBs = 243±11 MeV.
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fDs Puzzle

40



fπ and fK

 These are thought of as tests of (lattice) QCD.

 Experiments yield |Vud|fπ and |Vus|fK:

 |Vud| from nuclear 0+ → 0+ transitions;

 |Vus| from semileptonic K → πlν.

 Many groups (MILC, RBC, NPLQCD, Aubin-
Laiho-Van deWater, HPQCD, BMW) have these 
(or ratio fK/fπ) with accuracy at 2% level.
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fD and fDs

 These are thought of as tests of (lattice) QCD.

 Experiments (recently) yield |Vcd|fD and |Vcs|fDs:

 |Vcx| from CKM unitarity.

 First unquenched calculations [Fermilab/MILC] 
agreed, at 7% level, with first good measurements 
(CLEO for D, BaBar for Ds).
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〈0|s̄γµγ5c|Ds〉 = i fDs pµ.

Ds → lν
 Ds → lν should be the easiest leptonic decay for 

lattice QCD.

 A simple matrix element

 No light valence quarks.

 Counting experiment at CLEO, B factories.

 New physics thought to be very unlikely.
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And then something funny happened (end 2007)...
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HPQCD

a 3.8σ discrepancy, or 2.7σ ⊕ 2.9σ.

2+1

χ2/dof = 0.67
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Updates from FPCP (CLEO) and Lat’08 ...

BaBar

Belle
CLEO

CLEO πν
CLEO eνν

Fermilab/MILC
HPQCD

a 3.6σ discrepancy, or 2.9σ ⊕ 2.2σ.

2+1

χ2/dof = 0.13
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With CLEO’s papers of January 12, 2009

BaBar

Belle
CLEO

CLEO πν
CLEO eνν

Fermilab/MILC
HPQCD

a 3.0σ discrepancy, or 2.5σ ⊕ 1.9σ.

2+1
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A Puzzle

 Experimental errors?

 Radiative corrections?

 CKM?

 Lattice QCD?

 Unlikely: stats limited.

 No: 1–2%

 No: need |Vcs| > 1.1.

 Let’s see.

B(Ds → !ν) =
mDsτDs

8π
f 2
Ds |GFV ∗csm!|2

(
1−

m2
!

m2
Ds

)2
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263.1 ± 6.7 
MeV

HPQCD
241±3 linear in a2: 239; quad in a2: 242;

linear in a4: 245.

As the lattice gets finer, the discrepancy grows:

slope is 
O(αsmcΛa2)
as expected
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If mc (set from ηc) were retuned to flatten this, 
fDs (at a ≠ 0) would not change much.
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Error Budget

fK=f! fK f! fDs
=fD fDs

fD !s=!d

r1 uncerty. 0.3 1.1 1.4 0.4 1.0 1.4 0.7
a2 extrap. 0.2 0.2 0.2 0.4 0.5 0.6 0.5
Finite vol. 0.4 0.4 0.8 0.3 0.1 0.3 0.1
mu=d extrap. 0.2 0.3 0.4 0.2 0.3 0.4 0.2
Stat. errors 0.2 0.4 0.5 0.5 0.6 0.7 0.6
ms evoln. 0.1 0.1 0.1 0.3 0.3 0.3 0.5
md, QED, etc. 0.0 0.0 0.0 0.1 0.0 0.1 0.5

Total % 0.6 1.3 1.7 0.9 1.3 1.8 1.2

Δq = 2mDq – mηc

charmed sea     << 1%?

50



Other Results
arXiv:hep-lat/0610092  & arXiv:0706.1726 [hep-lat]

what expt HPQCD

mJ/ψ – mηc 118.1 111 ± 5‡ MeV

mDd 1869 1868 ± 7 MeV

mDs 1968 1962 ± 6 MeV

Δs/Δd 1.260 ± 0.002 1.252 ± 0.015

fπ 130.7 ± 0.4 132 ± 2 MeV

fK 159.8 ± 0.5 157 ± 2 MeV

fD 205.8 ± 8.9* 207 ± 4 MeV

*CLEO arXiv:08062112     ‡annihilation corrected
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What if

 ... the discrepancy is real?

 Then it must be non-Standard physics.

 How wacky would a non-Standard model be?

 It turns out particles that are already being 
considered can do the trick.

 B.A. Dobrescu & ASK, arXiv: 0803.0512
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 Effective interactions 



can be induced by heavy particles of charge +1, 
+2/3, –1/3. 



 Charged Higgs, new W′; leptoquarks.

New Particles

Leff =
C!

A
M2 (s̄γµγ5c)(ν̄Lγµ!L)+

C!
P

M2 (s̄γ5c)(ν̄L!R)+H.c.
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Beyond SM
 New W’ boson: unlikely.

 Charged Higgs: 

 Model II destructively interference;

 BAD & ASK found new model.

 Leptoquarks:

 J = 0, (3, 1, –1/3), aka , can explain the effect.d̃
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 Charged Higgs model predicts a similarly-
sized deviation in D → lν, now disfavored:

new CLEO:  205.8±8.9 MeV

new Fermilab/MILC:  207±11 MeV

HPQCD:  207±4 MeV

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
fD (MeV)

µν
latQCD

55



 The generic bounds on mass/coupling: 




any non-Standard explanation of the effect is 
observable at the LHC. 

 Leptoquarks: .

LHC

M
(ReC!

A,P)1/2 !
{

710 GeV, 920 GeV for ! = τ
850 GeV, 4500 GeV for ! = µ

gg→ d̃ ¯̃d→ !+
1 !−2 jc jc
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Conclusions
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 Lattice QCD with 2+1 staggered sea quarks 
has provided many results since 2003;

 now 2+1 Wilson and DWF sea too.

 Broad, and often precise, agreement with 
experiment in hadron masses, quarkonium 
splittings, decay properties.

 Precise agreement of αs and heavy-quark 
masses, where pQCD also reliable.
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 The outlier is fDs, which should be easy:

 valence quarks aren’t light;

 PCAC normalization.

 Experimental statistical error is yardstick for 
discrepancy: with 2×(lattice error) still 2.4σ.

 CLEO done; BaBar & Belle could revisit; 
BES will go further in a few years.

 If new particle, LHC will make them.
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Jack Laiho
called away for job interview
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