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● QCD is a rich theory that describes  many phenomena around us

● It is the only non-perturbative QFT that we can access in the laboratory

● Testable QCD predictions  span distances from 1 fm to 0.001 fm and 
energies from few hundred MeV to few TeV

● QCD will be responsible for  much of the LHC physics

● This talk – QCD at the Tevatron and the LHC



  

Preface

● Many hadron collider QCD applications are  based on the factorization 
theorem 

                                                               

● According to the theorem, we have the following objects to deal with

●  parton distributions

●  hard scattering cross-sections

●  fragmentation (parton showers, hadronization, jets)

●  higher twist, underlying event (beyond the unproven theorem)



  

Parton distributions
● Parton distributions are non-

perturbative objects determined 
from dedicated fits to data

● MTSW, CTEQ, Alekhin, NNPDF

● Issues:  

● consistency of data sets 

● Initial parameterization bias

● PDF error estimates

● Examples:

● MTSW 2008 update reduced 
Tevatron Higgs production 
cross-section by about 10 %

● CTEQ6M increased  the W 
production cross-section at the 
LHC by about 6 %

AP



  

Hard scattering

● Thanks to asymptotic freedom, 
hard scattering can be computed  
in perturbation theory

● Different approximations – parton 
showers, fixed (LO, NLO, NNLO) 
order matrix elements and 
combinations of the above

● What is applicable where? What is 
the accuracy? 

● Recent highlights

● consistent framework for 
combining parton showers and 
fixed order computations

● breakthrough in NLO 
computations



  

Fragmentation

● Change of degrees of freedoms: 
quarks and gluons → hadrons

● Jets, hadronization, underlying 
event 

● Description relies on parton 
showers, resummations, models

● Study of underlying event with the 
Tevatron data

● Infra-red unsafe  algorithms are 
being phased out; fast 
implementations of seedless cone-
based infra-red safe algorithms are 
available

● Focus on jet algorithms designed 
to achieve specific physics goals 
(study QCD, discover new 
particles, etc.)

ET = 666 GeV 
η  =  0.43 

ET = 633 GeV 
η  = -0.19

One of the di-jet events with the highest
jet transverse momenta



  

Preface

● QCD for hadron colliders is a vibrant and broad field

● Since it is impossible to do justice to all topics, I decided to discuss topics 
where I believe real breakthrough occurred in the past year

● next-to-leading (NLO) computations in QCD

● QCD ideas for Higgs and BSM discoveries at the LHC

● new approaches to parton distribution functions determination



  

NLO computations

● There are many ways to compute hard scattering cross-sections and NLO is 
just one of them

● parton showers (PYTHIA, HERWIG, SHERPA) 

● resummations   (RESBOS, etc)

● fixed order computations (ALPGEN, MADGRAPH, HELAC, COMIX, 
MCFM)

● … and combinations of the above  (CKKW, MC@NLO, POWHEG)

● These approaches are based on different approximation and   have different 
regions of applicability

● Roughly:

● Parton showers & resummations  → phase space edges (soft, collinear)

● Fixed order calculations (LO, NLO) → bulk of the phase space

● A proper tool to describe an observable depends on the observable

mailto:MC@NLO


  

NLO computations

● Many observables relevant for BSM searches at the Tevatron and the LHC 
are dominated by large momentum transfers → NLO QCD should be the 
right tool

● The problem is that we don't know what ``large momentum transfer'' really 
means but we can learn this from the Tevatron data 

● CDF and D0 started releasing comparisons between theory and experiment 
based on ~1 fb-1  of integrated luminosity.  Adanced theory is employed: 

● ALPGEN or MADGRAPH matched to PYTHIA or HERWIG  are used for 
leading order studies

● MCFM, MC@NLO, JetRAD, NLOJET++  and other dedicated NLO 
routines are used  for NLO predictions  

● The goal of these studies  is to establish what works and what doesn't and to 
draw some lessons for the LHC

fb−1

mailto:MC@NLO


  

NLO: inclusive jet production 
● Measurement of inclusive jet transverse energy distribution is a classic result 

sensitive to the interplay of 

● NLO computations 

● large-x PDFs

● BSM four-fermion contact                                                                 
interactions

● D0 & CDF measurements are                                                                         
in good agreement with NLO QCD                                                                    
                                                                     



  

NLO: dijet azimuthal correlations

● Δφ distribution is sensitive to multiple soft emissions at Δφ=π and to hard 
emissions for smaller Δφ

● A single plot allows us to check various pQCD approximations

MC@NLO, POWHEG

mailto:MC@NLO


  

NLO QCD: W+jets at the Tevatron

● W+jets is another  interesting example of where we stand

● It is an important background for many Tevatron and the LHC searches   

● CDF data agrees very well with LO computations  matched to parton 
showers and exceptionally well with NLO QCD

● NLO QCD results exhibit very small scale dependences



  

NLO computations
● NLO QCD predictions for W+3 and W+4 jets used to be  beyond 

computational  capabilities 

● NLO QCD computations with large number of particles are simple, as a 
matter of principle but hard, as a matter of practice

● Whether or not a particular process can be computed through NLO QCD is a 
function of multiplicity; there is a sharp cut-off at 2 → 4 processes: 

● many 2 → 3  processes computed (3jet, Hjj, WWj, VVV, ttZ, etc.) 

●  .. but not a single 2 → 4 process is fully known through NLO QCD

● Several reasons, that we keep citing for many years

● many diagrams

● complicated analytic treatment

● numerical instabilities

● But,  there is a feeling that the situation started to change rapidly



  

NLO QCD computations

● During the past year computational methods became sufficiently mature to 
take on 2 → 4 processes

●  pp → tt bb                                                    Denner, Dittmaier, Pozzorini

●  pp → W +3 jets                                   Blackhat (Bern et al.),  Rocket (Ellis et al.)

● These are very important results – they open the  door for NLO QCD 
computations to many 2 → 4 processes and beyond

● Traditional Passarino-Veltman  reduction-based methods were developed 
and optimized over the past 15 years; they are responsible for the bulk of 
existing NLO phenomenology 

● Unitarity is a new game in town but it is very promising and is also  
interesting since it changes perspective on how QFT works [at one-loop]



  

NLO QCD computations

● Computation of one-loop corrections is the bottleneck

● NLO computations seek to determine reduction coefficients c
j
                         

                                                                                                                            
                                                    

●  Unitarity is helpful because

● It constrains reduction coefficients

● tree-level amplitudes are involved in the constraint                                     
                                                                                                                      
                                                                                                                      
                                                                                                                      
                                                                                                                      
                                                                                                                      
                                                                                                                      
                                                                                                                  
                                                                                                                  

● In the past few years, it was understood how  to use such constraints 
efficiently



  

NLO computations
● Bern, Dixon and Kosower envisioned importance of unitarity (~ 1990)

● Impressive early successes (5 partons, Z(W)+4 partons) but no real 
computational method. Impact limited

● In the past few years several observations resulted in a breakthrough

● Cachazo, Britto, Feng point out that one can take cuts of one-loop 
amplitude with respect to loop momentum  (rather than external 
kinematic invariants)

● Ossola, Pittau and Papadopoulos (OPP)  showed that reduction 
coefficients c

j 
 can be reconstructed if integrands of  Feynman integrals 

are known for special values of the loop momenta,  where  at least one 
inverse Feynman propagator vanishes ↔ at least one on-shell particle

● Ellis, Giele and Kunszt showed that  OPP reduction procedure meshes 
well with generalized unitarity

● These and other developments  resulted in generalized unitarity becoming a 
practical tool for phenomenology 



  

W+3 jets at the Tevatron

● First physics applications of unitarity methods – W+3 jet production at the 
Tevatron and the LHC (Rocket, Blackhat)

● Excellent agreement with the CDF data     Bern,  Berger, Dixon, Kosower, Forde, 
Febres-Cordero, Ita, Maitre, Gleisberg



  

Implications for the LHC
● NLO QCD successes in describing Tevatron data should encourage us to 

trust NLO QCD predictions for  the LHC 

● Unitarity techniques enable NLO QCD computations for high-multiplicity 
processes,  enhancing degree of realism that NLO can provide



  

QCD ideas and  BSM searches

● Understanding of QCD should enable us to broaden BSM search strategies 

● A lot of recent work in that direction

● appearance of new  discovery channels (Higgs, resonances)

● design of new jet algorithms 

● An example:  can one discover a Higgs boson through its decay to bottom 
pairs at the LHC?

● Conventional wisdom says – no way since it will be swamped by direct 
bottom production

● But, ingenious suggestion by Butterworth, Davidson, Rubin and Salam 
opens up a window of opportunity



  

PP → WH & H → bb

● Recall why searching for pp → WH(bb)  is  hard

● σ(pp → WH(bb)) ≈ few pb ,  σ(pp → W jj)   ≈ few x 10^4 pb 

● σ(pp → Wbb)   ≈ few  pb      σ(pp → tt) ≈ 800  pb,  σ(pp → bt) ≈ 400  pb

● Signal extraction is clearly very difficult. The question is can one do 
significantly better. The right panel shows that it is possible

ATLAS TDR

Butterworth, Davidson, Rubin, Salam



  

PP →  WH and H → bb
● Here are three main ideas

● require  high-p
T
 W boson and the Higgs boson in the event

–  leads to back-to-back events where two b-quarks are contained 
within the same jet . 

– high-p
T 
 does decrease the signal BUT it reduces  the background 

even stronger (e.g. kills  tt production)     

– improves acceptancies and kinematic resolution                                  
                                                                                                               
  



  

PP → WH and H → bb 
● use differences in branching patterns of H → bb and g → gg, q → qg,..

– QCD partons prefer  soft emissions:                                                
parent → hard off-spring + soft off-spring

– H →  bb prefers (energy) symmetric branchings
● use jet algorithm which reflects underlying  pattern of QCD radiation to 

improve the mass resolution

– beat down  contamination from the underlying event

– capture most of  perturbaive QCD radiation

Mass drop filtering



  

PP → WH and H → bb

● And, when this method is employed, the results are spectacular 

Techniques are generic;  related studies by other groups

Thaler and Wang, 
Kaplan, Rehermann, 
Scwartz, Tweedie, 
Ellis, Vermilion, Walsh, 
Almedia, Perez, Lee, 
Sterman, Virzi, Sung 



  

Parton distribution functions

● Parton distribution functions (PDFs) are important for any predictions related 
to hadron collider physics

● Experimental precision and theoretical calculations improved to a degree 
that good understanding of PDFs and their errors is relevant

● PDF fitting became an industry with such ``brand'' names as MRST-MSTW, 
CTEQ and Alekhin competing for global customers

● Often PDFs by different groups  are incompatible even within errors   



  

Parton distribution functions

● This is somewhat surprising since all ``brand names''  use similar strategies 
in PDF fitting

●  choose initial parameterization  

●  choose data set to be fitted (DIS, Drell-Yan, Z, W, Tevatron jets)

●   determine parameters of the parameterization and their uncertainties

● Incompatible results occur because of subjective choices in the above 
procedure. Different groups 

●  include different data;

●  employ different initial parameterizations;

●  use different criteria for PDF uncertainty estimates   

● More  objectivity  in dealing with these issues is desired 



  

Parton distribution funtions

● One option is to introduce probability distributions for PDFs and to infer 
these probability distributions from available data  

● If the probability distributions are known, it is easy to generate statistical 
ansamble of PDFs and to compute  PDF-related uncertainties for a any 
observable 

● If the probability distribution properly samples functional space of PDFs,  
initial parameterization bias is completely avoided

● This procedure requires mapping of infinitely-dimensional space by finite 
number of measurements. So  the question is how to implement this in 
practice

Giele, Keller, Kosower



  

Parton distribution functions

● NNPDF collaboration  suggested to use  a combination of Monte-Carlo 
techniques and neural network for efficient sampling and initial 
parameterization de-bias 

● existing data is used to generate artificial data sets large enough so that 
actual data and errors are obtained using standard averages 

●  artificial data sets are employed to  construct N
s
 parton distribution 

functions using neural network output

● To this end, data is divided into training and validation samples and the 
procedure stops when fit quality in validation sample does not increase

● A set of N
s 
 PDFs is used to calculate observables and their PDF-related 

uncertainties



  

Parton distribution functions
● This procedure leads to  interesting features

● reasonable agreement with brand names central values 

● compared to brand name fits, errors are typically large; in particularly for 
such values of x where data is absent

● procedure handles incompatible data sets by terminating fitting  when no 
improvement in validation set can be achieved

●  stable against ``data removal'' – error increases, central value stays  



  

Conclusions

● There is little doubt that QCD will play very important role at the LHC 

● QCD can describe Tevatron data very well if theoretical tools are used as 
appropriate. This gives encouragement for the LHC

● Last year brought remarkable progress  

● very important developments  in NLO computations – new computational 
methods were finally put to work and 2 → 4 processes are within reach

● interesting developments in designing jet algorithms to satisfy particular 
physics goals

● new ideas related to PDFs determination from data

● ..and many other things I did not talk about (NNLO,  MC+NLO,  CKKW, 
studies of underlying event, etc)

 



  

W+3 jets at the LHC

● Comparison of NLO QCD predictions                                                                
for W+3 jets with the Tevatron data                                                              
should encourage us to trust NLO QCD                                           
predictions for the LHC 



  



  

NLO computations
● F90 program Rocket  can compute the following one-loop amplitudes

● N-gluon scattering amplitudes

● two-quark (massless and massive) + N-gluon scattering amplitudes

● W+two-quark+N-gluon amplitudes

● W+four-quarks+1 gluon

● massive quark pair + massless quark pair  + N gluons

● Note that N  is a PARAMETER which is specified alongside with collision 
energy, polarization states, masses etc.

● To have the right perspective: for all-gluon amplitudes look at the number of  
Feynman diagrams

● N=6    → 10860 Feynman diagrams

● N=7    → 168 925 Feynman diagrams

● Rocket was successfully used to compute an N=20 gluon amplitude!

Giele, Zanderighi

Ellis,Giele, Kunszt, Melnikov, Zanderighi
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