QCD aspects of hadron collider physics

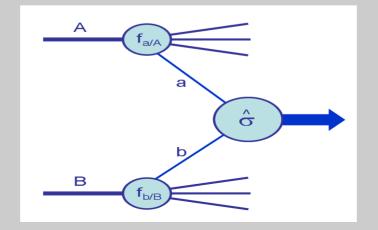
Kirill Melnikov

Johns Hopkins University

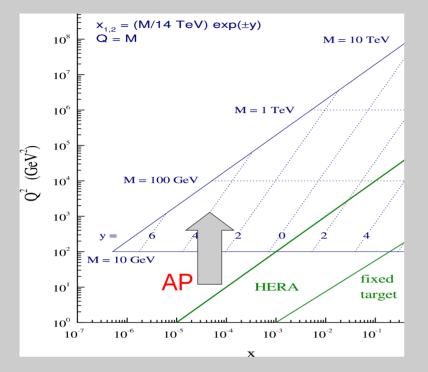
APS meeting, Denver, May 3, 2009

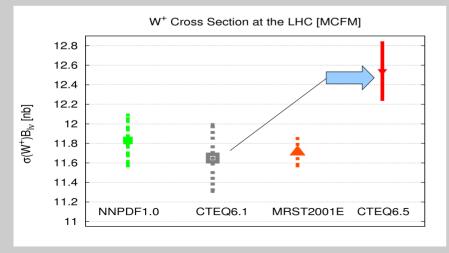
Preface

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} + \sum_{i=1}^{n_f} \bar{\psi}_i \left(i\hat{D} - m_i \right) \psi_i$$

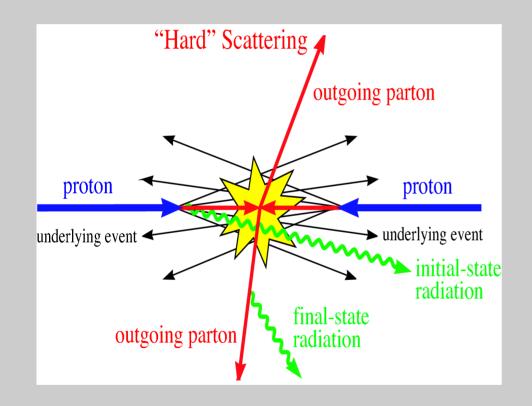

- QCD is a rich theory that describes many phenomena around us
- It is the only non-perturbative QFT that we can access in the laboratory
- Testable QCD predictions span distances from 1 fm to 0.001 fm and energies from few hundred MeV to few TeV
- QCD will be responsible for much of the LHC physics
- This talk QCD at the Tevatron and the LHC

Preface

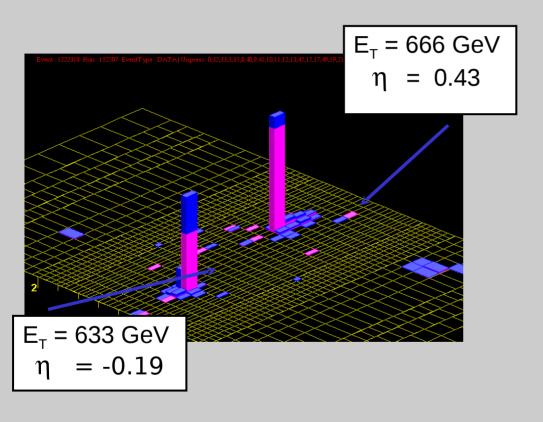

Many hadron collider QCD applications are based on the factorization theorem


$$\langle \mathcal{O} \rangle = \sum_{i,j} \int \mathrm{d}x_1 \mathrm{d}x_2 \ f_i(x_1) f_j(x_2) \ \mathrm{d}\sigma_{ij \to p} \ \mathcal{F}_{p \to \mathcal{O}} + \mathcal{O}(1/Q)$$

- According to the theorem, we have the following objects to deal with
 - parton distributions
 - hard scattering cross-sections
 - fragmentation (parton showers, hadronization, jets)
 - higher twist, underlying event (beyond the unproven theorem)


Parton distributions

- Parton distributions are nonperturbative objects determined from dedicated fits to data
- MTSW, CTEQ, Alekhin, NNPDF
- Issues:
 - consistency of data sets
 - Initial parameterization bias
 - PDF error estimates
- Examples:
 - MTSW 2008 update reduced Tevatron Higgs production cross-section by about 10 %
 - CTEQ6M increased the W production cross-section at the LHC by about 6 %


Hard scattering

$$d\sigma = d\sigma_0 + \frac{\alpha_s}{\pi} \left(d\sigma_{12} \ln^2 \frac{p}{\lambda} + d\sigma_{11} \ln \frac{p}{\lambda} + d\sigma_{10} \right) + + \mathcal{O}(\alpha_s^2)$$

- Thanks to asymptotic freedom, hard scattering can be computed in perturbation theory
- Different approximations parton showers, fixed (LO, NLO, NNLO) order matrix elements and combinations of the above
- What is applicable where? What is the accuracy?
- Recent highlights
 - consistent framework for combining parton showers and fixed order computations
 - breakthrough in NLO computations

Fragmentation

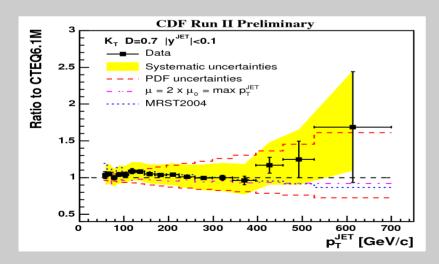
One of the di-jet events with the highest jet transverse momenta

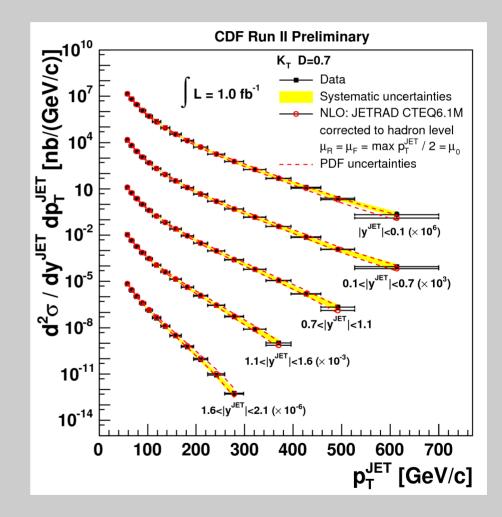
- Change of degrees of freedoms: quarks and gluons → hadrons
- Jets, hadronization, underlying event
- Description relies on parton showers, resummations, models
- Study of underlying event with the Tevatron data
- Infra-red unsafe algorithms are being phased out; fast implementations of seedless conebased infra-red safe algorithms are available
- Focus on jet algorithms designed to achieve specific physics goals (study QCD, discover new particles, etc.)

Preface

- QCD for hadron colliders is a vibrant and broad field
- Since it is impossible to do justice to all topics, I decided to discuss topics where I believe real breakthrough occurred in the past year
 - next-to-leading (NLO) computations in QCD
 - QCD ideas for Higgs and BSM discoveries at the LHC
 - new approaches to parton distribution functions determination

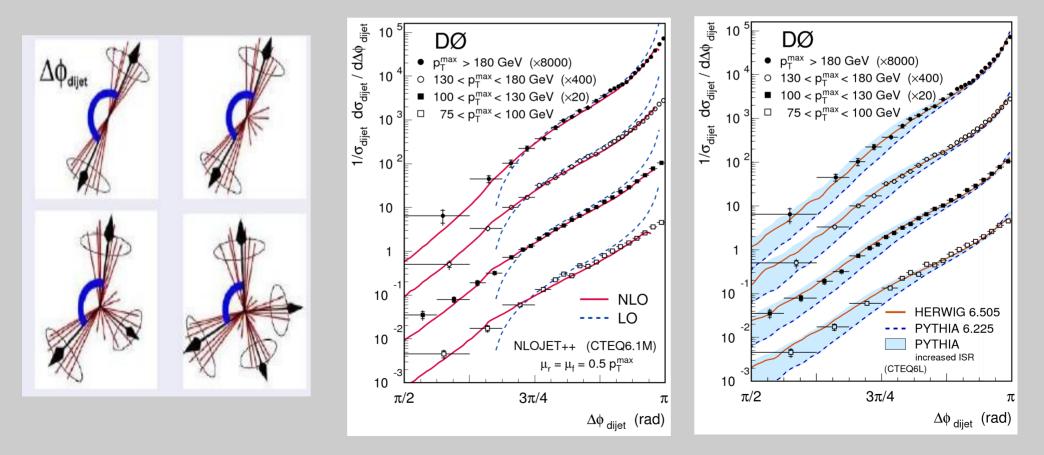
NLO computations


- There are many ways to compute hard scattering cross-sections and NLO is just one of them
 - parton showers (PYTHIA, HERWIG, SHERPA)
 - resummations (RESBOS, etc)
 - fixed order computations (ALPGEN, MADGRAPH, HELAC, COMIX, MCFM)
 - ... and combinations of the above (CKKW, MC@NLO, POWHEG)
- These approaches are based on different approximation and have different regions of applicability
- Roughly:
 - Parton showers & resummations \rightarrow phase space edges (soft, collinear)
 - Fixed order calculations (LO, NLO) \rightarrow bulk of the phase space
- A proper tool to describe an observable depends on the observable

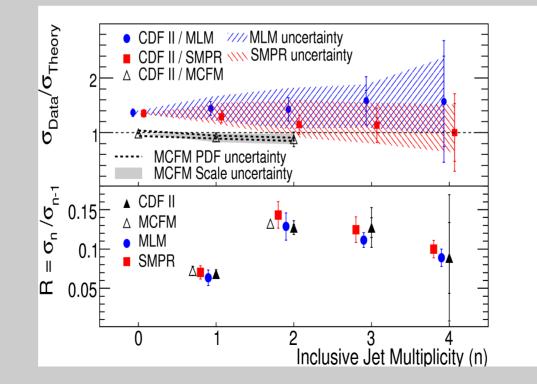

NLO computations

- Many observables relevant for BSM searches at the Tevatron and the LHC are dominated by large momentum transfers → NLO QCD should be the right tool
- The problem is that we don't know what ``large momentum transfer'' really means but we can learn this from the Tevatron data
- CDF and D0 started releasing comparisons between theory and experiment based on ~1 fb⁻¹ of integrated luminosity. Adanced theory is employed:
 - ALPGEN or MADGRAPH matched to PYTHIA or HERWIG are used for leading order studies
 - MCFM, MC@NLO, JetRAD, NLOJET++ and other dedicated NLO routines are used for NLO predictions
- The goal of these studies is to establish what works and what doesn't and to draw some lessons for the LHC

NLO: inclusive jet production


- Measurement of inclusive jet transverse energy distribution is a classic result sensitive to the interplay of
 - NLO computations
 - large-x PDFs
 - BSM four-fermion contact interactions
- D0 & CDF measurements are in good agreement with NLO QCD

NLO: dijet azimuthal correlations


- $\Delta\phi$ distribution is sensitive to multiple soft emissions at $\Delta\phi{=}\pi$ and to hard emissions for smaller $\Delta\phi$
- A single plot allows us to check various pQCD approximations

MC@NLO, POWHEG

NLO QCD: W+jets at the Tevatron

- W+jets is another interesting example of where we stand
- It is an important background for many Tevatron and the LHC searches
- CDF data agrees very well with LO computations matched to parton showers and exceptionally well with NLO QCD
- NLO QCD results exhibit very small scale dependences

NLO computations

- NLO QCD predictions for W+3 and W+4 jets used to be beyond computational capabilities
- NLO QCD computations with large number of particles are simple, as a matter of principle but hard, as a matter of practice
- Whether or not a particular process can be computed through NLO QCD is a function of multiplicity; there is a sharp cut-off at $2 \rightarrow 4$ processes:
 - many 2 \rightarrow 3 processes computed (3jet, Hjj, WWj, VVV, ttZ, etc.)
 - ... but not a single 2 \rightarrow 4 process is fully known through NLO QCD
- Several reasons, that we keep citing for many years
 - many diagrams
 - complicated analytic treatment
 - numerical instabilities
- But, there is a feeling that the situation started to change rapidly

NLO QCD computations

- During the past year computational methods became sufficiently mature to take on 2 \rightarrow 4 processes
 - $pp \rightarrow tt bb$ Denner, Dittmaier, Pozzorini
 - $pp \rightarrow W + 3 jets$ Blackhat (Bern et al.), Rocket (Ellis et al.)
- These are very important results they open the door for NLO QCD computations to many 2 → 4 processes and beyond
- Traditional Passarino-Veltman reduction-based methods were developed and optimized over the past 15 years; they are responsible for the bulk of existing NLO phenomenology
- Unitarity is a new game in town but it is very promising and is also interesting since it changes perspective on how QFT works [at one-loop]

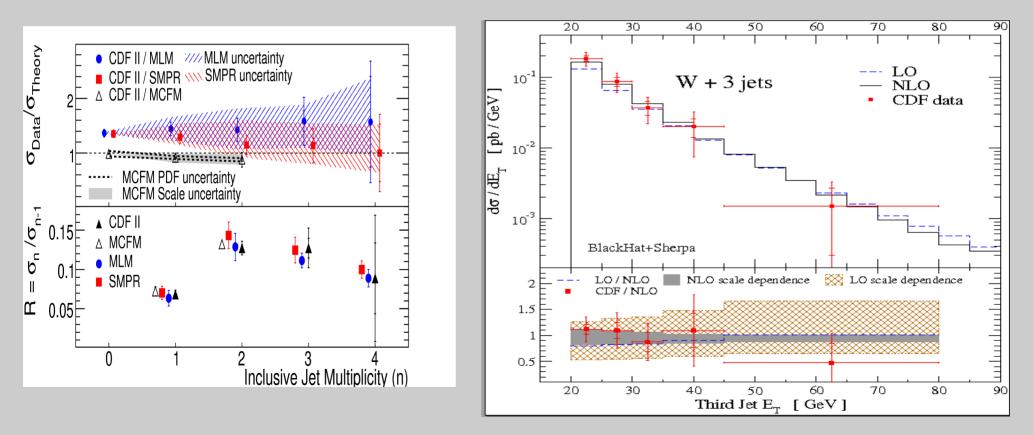
NLO QCD computations

- Computation of one-loop corrections is the bottleneck
- NLO computations seek to determine reduction coefficients c_i

$$\mathcal{A}^{1-\text{loop}} = \sum c_j I_j$$

- Unitarity is helpful because
 - It constrains reduction coefficients
 - tree-level amplitudes are involved in the constraint

In the past few years, it was understood how to use such constraints efficiently


NLO computations

- Bern, Dixon and Kosower envisioned importance of unitarity (~ 1990)
- Impressive early successes (5 partons, Z(W)+4 partons) but no real computational method. Impact limited
- In the past few years several observations resulted in a breakthrough
 - Cachazo, Britto, Feng point out that one can take cuts of one-loop amplitude with respect to loop momentum (rather than external kinematic invariants)
 - Ossola, Pittau and Papadopoulos (OPP) showed that reduction coefficients c_j can be reconstructed if integrands of Feynman integrals are known for special values of the loop momenta, where at least one inverse Feynman propagator vanishes ↔ at least one on-shell particle
 - Ellis, Giele and Kunszt showed that OPP reduction procedure meshes well with generalized unitarity
- These and other developments resulted in generalized unitarity becoming a practical tool for phenomenology

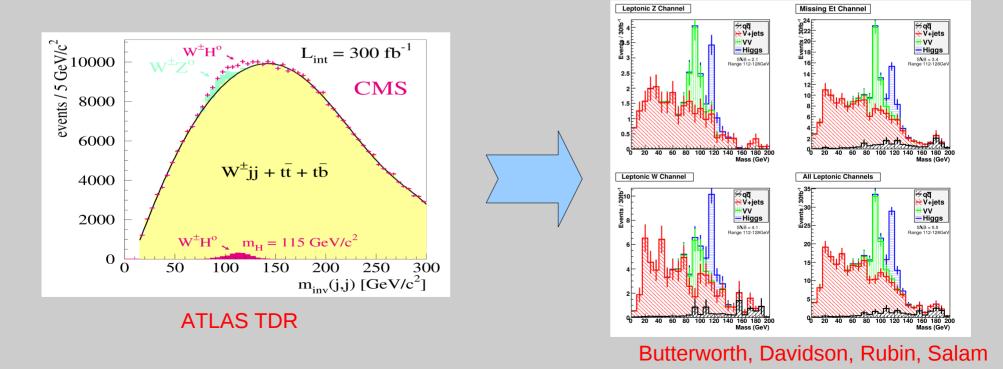
W+3 jets at the Tevatron

- First physics applications of unitarity methods W+3 jet production at the Tevatron and the LHC (Rocket, Blackhat)
- Excellent agreement with the CDF data

Bern, Berger, Dixon, Kosower, Forde, Febres-Cordero, Ita, Maitre, Gleisberg

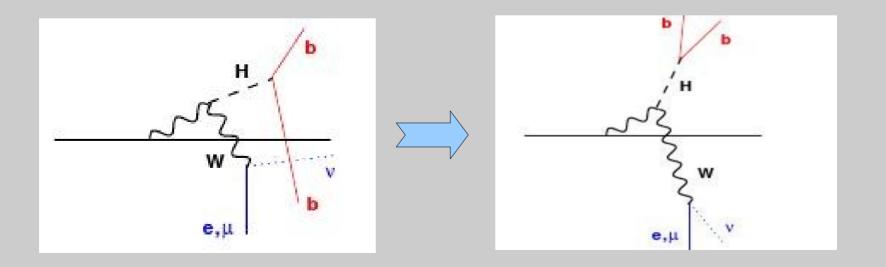
Implications for the LHC

- NLO QCD successes in describing Tevatron data should encourage us to trust NLO QCD predictions for the LHC
- Unitarity techniques enable NLO QCD computations for high-multiplicity processes, enhancing degree of realism that NLO can provide

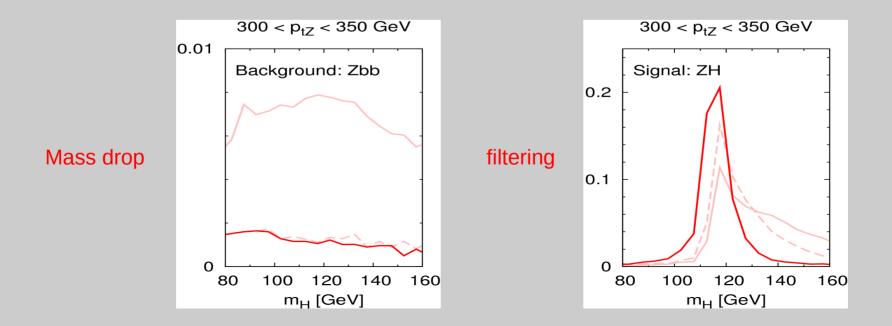

An experimenter's wishlist Hadron collider cross-sections one would like to know at NLO			
Single boson	Diboson	Run II Monte Carlo Wo Triboson	Heavy flavour
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
		$WWW + \overline{b}\overline{b} + \leq 3j$	
$W + c\overline{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$tar{t}+W+\leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma+\leq 3j$	$t\bar{t} + Z + \leq 2j$
$Z+bar{b}+\leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$
$Z + c\overline{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$tar{b}+\leq 2j$
$oldsymbol{\gamma}+\leq 5j$	$\gamma\gamma+\leq 5j$		$bar{b}+\leq 3j$
$\gamma + bar{b} + \leq 3j$	$\gamma\gamma+bar{b}+\leq 3j$		
$\gamma + oldsymbol{c}oldsymbol{ar{c}} + \leq 3j$	$\gamma\gamma + car{c} + \leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\overline{b} + \leq 3j$		
	$WZ + c\bar{c} + \leq 3j$		
	$W\gamma+\leq 3j$		
	$Z\gamma + \leq 3j$		

QCD ideas and BSM searches

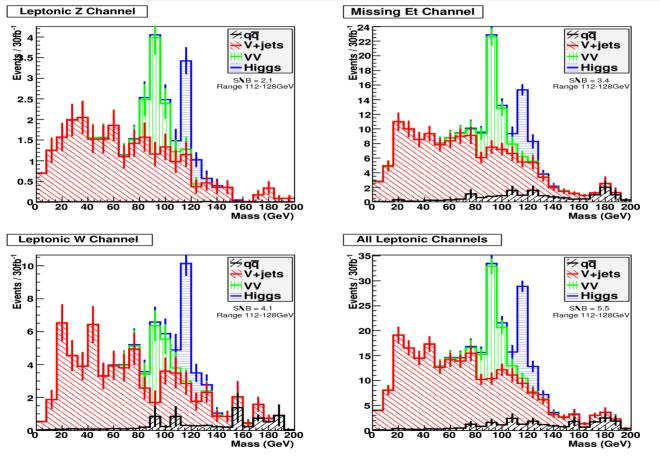
- Understanding of QCD should enable us to broaden BSM search strategies
- A lot of recent work in that direction
 - appearance of new discovery channels (Higgs, resonances)
 - design of new jet algorithms
- An example: can one discover a Higgs boson through its decay to bottom pairs at the LHC?
 - Conventional wisdom says no way since it will be swamped by direct bottom production
 - But, ingenious suggestion by Butterworth, Davidson, Rubin and Salam opens up a window of opportunity


$PP \ \rightarrow \ WH \ \& \ H \ \rightarrow \ bb$

- Recall why searching for $pp \rightarrow WH(bb)$ is hard
 - $\sigma(pp \rightarrow WH(bb)) \approx few pb$, $\sigma(pp \rightarrow W jj) \approx few x 10^4 pb$
 - $\sigma(pp \rightarrow Wbb) \approx few pb$ $\sigma(pp \rightarrow tt) \approx 800 pb$, $\sigma(pp \rightarrow bt) \approx 400 pb$
- Signal extraction is clearly very difficult. The question is can one do significantly better. The right panel shows that it is possible


$PP \rightarrow WH \ and \ H \rightarrow bb$

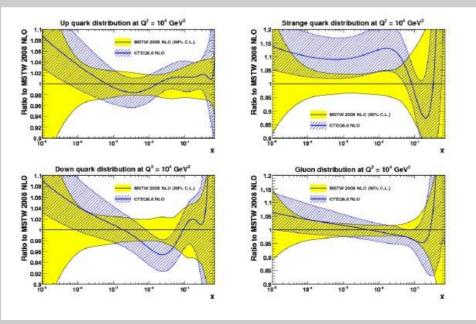
- Here are three main ideas
 - require high-p_ W boson and the Higgs boson in the event
 - leads to back-to-back events where two b-quarks are contained within the same jet .
 - high- p_{T} does decrease the signal BUT it reduces the background even stronger (e.g. kills tt production)
 - improves acceptancies and kinematic resolution


$PP \rightarrow WH \ and \ H \rightarrow bb$

- use differences in branching patterns of H \rightarrow bb and g \rightarrow gg, q \rightarrow qg,...
 - QCD partons prefer soft emissions: parent \rightarrow hard off-spring + soft off-spring
 - $H \rightarrow$ bb prefers (energy) symmetric branchings
- use jet algorithm which reflects underlying pattern of QCD radiation to improve the mass resolution
 - beat down contamination from the underlying event
 - capture most of perturbaive QCD radiation

$PP \rightarrow WH \ and \ H \rightarrow bb$

• And, when this method is employed, the results are spectacular



Thaler and Wang, Kaplan, Rehermann, Scwartz, Tweedie, Ellis, Vermilion, Walsh, Almedia, Perez, Lee, Sterman, Virzi, Sung

Techniques are generic; related studies by other groups

Parton distribution functions

- Parton distribution functions (PDFs) are important for any predictions related to hadron collider physics
- Experimental precision and theoretical calculations improved to a degree that good understanding of PDFs and their errors is relevant
- PDF fitting became an industry with such ``brand" names as MRST-MSTW, CTEQ and Alekhin competing for global customers
- Often PDFs by different groups are incompatible even within errors

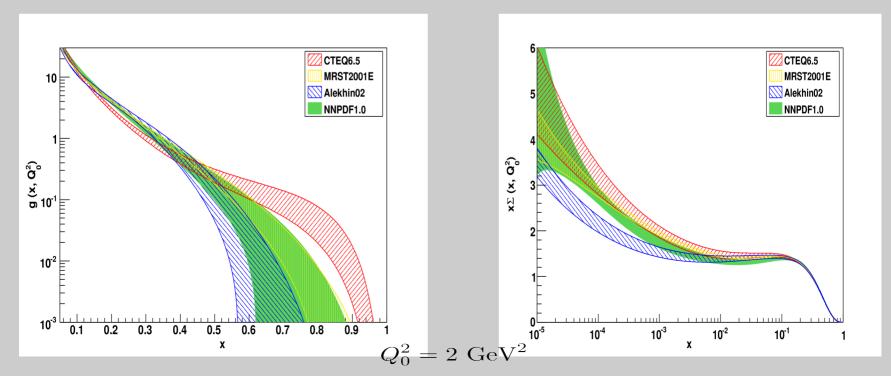
Parton distribution functions

- This is somewhat surprising since all ``brand names" use similar strategies in PDF fitting
 - choose initial parameterization

$$f(x) \propto x^{\alpha} (1-x)^{\beta}$$

- choose data set to be fitted (DIS, Drell-Yan, Z, W, Tevatron jets)
- determine parameters of the parameterization and their uncertainties
- Incompatible results occur because of subjective choices in the above procedure. Different groups
 - include different data;
 - employ different initial parameterizations;
 - use different criteria for PDF uncertainty estimates
- More objectivity in dealing with these issues is desired

Parton distribution funtions

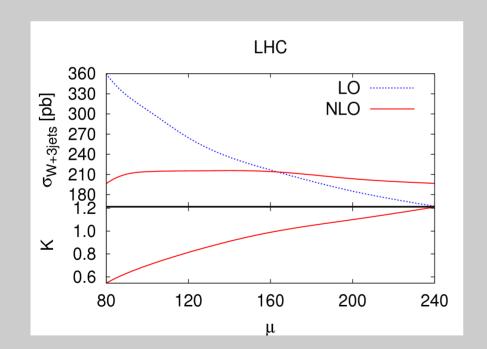

- One option is to introduce probability distributions for PDFs and to infer these probability distributions from available data Giele, Keller, Kosower
- If the probability distributions are known, it is easy to generate statistical ansamble of PDFs and to compute PDF-related uncertainties for a any observable
- If the probability distribution properly samples functional space of PDFs, initial parameterization bias is completely avoided
- This procedure requires mapping of infinitely-dimensional space by finite number of measurements. So the question is how to implement this in practice

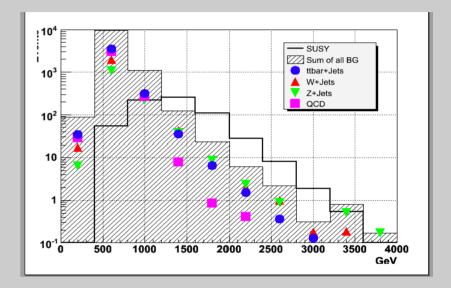
Parton distribution functions

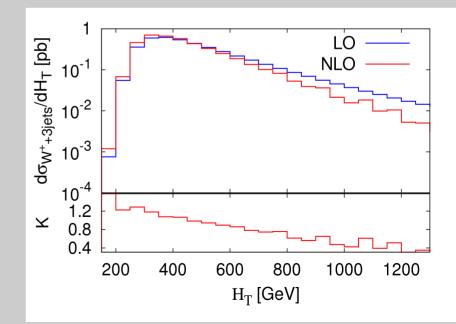
- NNPDF collaboration suggested to use a combination of Monte-Carlo techniques and neural network for efficient sampling and initial parameterization de-bias
 - existing data is used to generate artificial data sets large enough so that actual data and errors are obtained using standard averages
 - artificial data sets are employed to construct N_s parton distribution functions using neural network output
 - To this end, data is divided into training and validation samples and the procedure stops when fit quality in validation sample does not increase
 - A set of $\rm N_{_S}$ PDFs is used to calculate observables and their PDF-related uncertainties

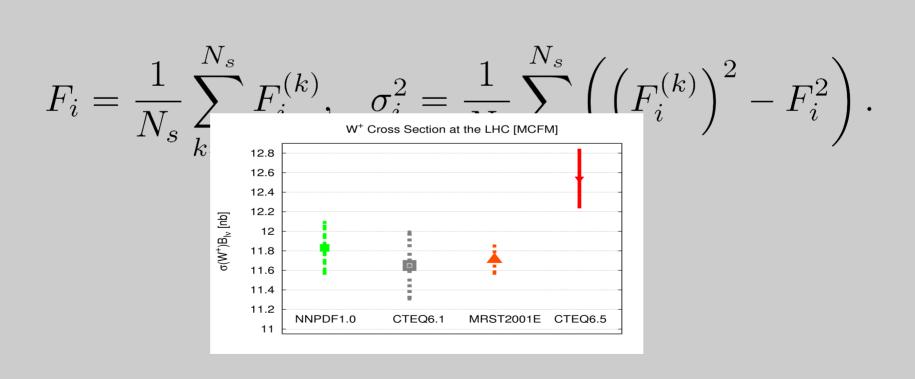
Parton distribution functions

- This procedure leads to interesting features
 - reasonable agreement with brand names central values
 - compared to brand name fits, errors are typically large; in particularly for such values of x where data is absent
 - procedure handles incompatible data sets by terminating fitting when no improvement in validation set can be achieved
 - stable against ``data removal'' error increases, central value stays




Conclusions


- There is little doubt that QCD will play very important role at the LHC
- QCD can describe Tevatron data very well if theoretical tools are used as appropriate. This gives encouragement for the LHC
- Last year brought remarkable progress
 - very important developments in NLO computations new computational methods were finally put to work and 2 \rightarrow 4 processes are within reach
 - interesting developments in designing jet algorithms to satisfy particular physics goals
 - new ideas related to PDFs determination from data
 - ..and many other things I did not talk about (NNLO, MC+NLO, CKKW, studies of underlying event, etc)


W+3 jets at the LHC

 Comparison of NLO QCD predictions for W+3 jets with the Tevatron data should encourage us to trust NLO QCD predictions for the LHC

NLO computations

- F90 program Rocket can compute the following one-loop amplitudes
 - N-gluon scattering amplitudes
 - two-quark (massless and massive) + N-gluon scattering amplitudes
 - W+two-quark+N-gluon amplitudes
 - W+four-quarks+1 gluon
 - massive quark pair + massless quark pair + N gluons
- Note that N is a PARAMETER which is specified alongside with collision energy, polarization states, masses etc.
- To have the right perspective: for all-gluon amplitudes look at the number of Feynman diagrams
 - N=6 \rightarrow 10860 Feynman diagrams
 - N=7 \rightarrow 168 925 Feynman diagrams
 - Rocket was successfully used to compute an N=20 gluon amplitude!

Ellis, Giele, Kunszt, Melnikov, Zanderighi