

LHC and Cosmology

Hitoshi Murayama (IPMU Tokyo, Berkeley) APS Meeting@Denver, May 3, 2009

There are many things we don't see

- Stars and galaxies are only ~0.5%
- Neutrinos are ~0.1–1.5%
- Rest of ordinary matter
 (electrons, protons & neutrons) are ~4.4%
 - Dark Matter ~23%
- Dark Energy ~73%
 - Anti-Matter 0%
 - Dark Field (Higgs) ~10⁶²%??

BERKELEY CENTER FOR THEORETICAL PHYSICS

stars neutrinos baryon dark matter dark energy

Dark Matter

Solar system revolves at 220km/s requires a lot of mass to keep it inside Milky Way

Sun---- Orion

огта

Perseus

Cygnus

10 000 ly

You don't want to be there

collision at 4500 km/sec

Credit: J. Wise, M. Bradac (Stanford/KIPAC)

Cosmological scales

 $\left(\begin{array}{c} D \end{array} \right)$

What do we know?

- Cold and Neutral
 - dark matter must be non-relativistic and clump together by gravitational attraction
 - must be electrically neutral
- lifetime longer than age of the Universe
- beyond that, rather little

Mass Limits "Uncertainty Principle"

- must clump to form galaxies, clusters
- imagine $V = G_N \frac{Mm}{r}$ "Bohr radius": $r_B = \frac{\hbar^2}{G_N Mm^2}$
- too small $m \Rightarrow$ won't fit in a galaxy!
- m > 10⁻²² eV "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

Dim Stars?

Search for MACHOs (Massive Compact Halo Objects)

Not enough of them!

Summary Mass Limits

BERKELEY CENTER FOR THEORETICAL PHYSICS

- 10⁻³¹ GeV to 10⁵⁰ GeV
- narrowed it down to within 81 orders of magnitude
- a big progress in 75 years since Zwicky

Self-Coup

- if self-coupling too big, will "smooth out" cuspy profile at the galactic center
- some people wanted it (Spergel and Steinhardt, astro-ph/9909386)
- need core < 35 kpc/h from data
 - $\sigma < 1.7 \times 10^{-25} \text{ cm}^2 \text{ (m/GeV)}$
 - (Yoshida, Springel, White, astro-ph/ 0006134)
- bullet cluster:

 $\sigma < 1.7 \times 10^{-24} \text{ cm}^2 \text{ (m/GeV)}$ (Markevitch et al, astro-ph/0309303)

1: 0.82: 0.65

ER FOR HYSICS

S1

THEORETICAL PHYSICS

$|MACHO \Rightarrow WIMP|$

 dominant paradigm: WIMP (Weakly Interacting Massive Particle)

 Stable heavy particle produced in early Universe, left-over from near-complete annihilation

 $\Omega_M = \frac{0.756(n+1)x_f^{n+1}}{g^{1/2}\sigma_{ann}M_{Pl}^3} \frac{3s_0}{8\pi H_0^2} \approx \frac{\alpha^2/(TeV)^2}{\sigma_{ann}}$

 $\alpha^2 / (TeV)^2$

thermal relic

 Ω_M

BERKELEY CENTER FOR THEORETICAL PHYSICS

- thermal equilibrium when $T>m_{\chi}$
- Once $T < m_{\chi}$, no more χ created
- if stable, only way to lose them is annihilation
- but universe expands and χ get dilute
- at some point they can't find each other
- their number in comoving volume "frozen"

 $\frac{0.756(n+1)x_f^{n+1}}{3s_0}$

BERKELEY CENTER FOR

Finding Dark Matter

Indirect method

PAMELA

FERMI

PM Nambu-Goldstone Erkeley Center FOR Dark Matter

need for enhancement

- At the freezeout, we need $\langle \sigma v \rangle \sim 10^{-9} \text{GeV}^{-2}$
- In the galactic halo, we need $\langle \sigma v \rangle BR \sim 10^{-7} GeV^{-2}$
- How do we reconcile them?
 - non-thermal relics
 - enhancement in the (halo density)²
 - attractive force between dark matter particles (Sommerfeld enhancement)
 - Our proposal: s-channel resonance just below threshold (Breit-Wigner enhancement)

- $s=4m^2+v_{rel}^2$
- If resonance M is below threshold 4m², not accessible v_{rel}²<0
- early universe, does not see the BW tail very much
- in halo, dark matter does see the tail
- called "ghost" in nuclear physics

PMUNambu-Goldstone ERKELEY CENTER FOR Dark Matter

Ibe, HM, Shirai, Yanagida, in preparation

prediction

• bumps in diffuse gamma

SUSY spectrum

- no dark matter (3-5 TeV) at LHC, but associated SUSY particles within LHC
- The model predicts light gauginos
 - gluino < I TeV, wino < 300 GeV
- very light gravitino m_{3/2}<16eV with no cosmological problem
- a lot to learn from LHC!

PMearge Hadron Collide FORELLEY CENTER FOR (LHC) Recreating Big Bang

HHH

Standard WIMP

- SUSY, Universal Extra Dimensions, Little Higgs with T-parity, Warped Extra Dimension,
- Can produce dark matter directly at LHC
- missing E_T signature
- details depend on models, parameters

Producing Dark Matter FOR in the laboratory

- Mimic Big Bang in the lab
- Hope to create invisible Dark Matter particles
- Look for events where energy and momenta are unbalanced
- "missing energy" E_{miss}
- Something is escaping the detector
 ⇒Dark Matter!?

Supersymmetric Dark Matter

Supersymmetry

amazing reach

Can do many precision measurements at LHC

New physics looks alike

missing E_T, multiple jets, b-jets, (like-sign) di-leptons

UED SUSY technicolor spin 1 spin 1/2 spin 0 +little Higgs with T-parity, warped ED with Z₃ baryon

Linear Collider

• Electron-positron collider

- Super-high-tech machine
- Accelerate the beam over ten miles
- Focus beam down to a few nanometers and make them collide
- Precisely measure the dark matter properties

International Linear Collider (ILC)

Omega from colliders

What Dark Matter is?

- cosmological measurement of dark matter
 - abundance $\propto \sigma_{ann}^{-}$
- detection experiments
 - scattering cross section
- production at colliders
 - mass, couplings
 - can calculate cross sections
- If they agree with each other:
- ⇒ Will know what Dark Matter is

mass of the Dark Matter

 \Rightarrow Will understand universe back to t~10⁻¹⁰ sec

Conclusion

Major puzzles at the intersection of particle physics and cosmology • TeV energy scale appears relevant Dark Matter, Dark Field Possibly also origin of baryon asymmetry • We are finally getting there with LHC! • combine LHC with underground, astro, cosmic ray, CMB, followed by LC

