The State of the ν Mass Spectrum

Morgan Wascko
Imperial College London
Outline

- Introduction
- Discovery
 - Oscillation measurements
- Absolute scale of mass
 - Beta decay endpoint
 - Cosmology
- Nature of neutrino mass
 - Double beta decay
- Summary

<table>
<thead>
<tr>
<th>Mass (eV)</th>
<th>ν1</th>
<th>ν2</th>
<th>ν3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>solar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>atmospheric</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flavor key:

- νe
- νμ
- ντ
"I have done something very bad today by proposing a particle that cannot be detected; it is something no theorist should ever do."

— Wolfgang Pauli (1930)
"I have done something very bad today by proposing a particle that cannot be detected; it is something no theorist should ever do."

— Wolfgang Pauli (1930)
νs in Standard Model

- Electrically Neutral
- Colorless
- Massless
- Flavors don’t mix
Why ν mass is difficult

- Usual techniques
 - Mass reconstruction
 - Spectrometry
- Cannot directly measure ν mass eigenstates!
- Must resort to indirect techniques

Phys Rev. Lett. 33, 1406 (1974)
Why ν mass is difficult

- Usual techniques
- Mass reconstruction
- Spectrometry

- Cannot directly measure ν mass eigenstates!
- Must resort to indirect techniques

$e^{-} \rightarrow e^{+}$

Phys Rev. Lett. 33, 1406 (1974)
Why ν mass is difficult

- Usual techniques
 - Mass reconstruction
 - Spectrometry
- Cannot directly measure ν mass eigenstates!
- Must resort to indirect techniques

Discovery of Neutrino Mass

Super Kamiokande
First hints

- Solar Neutrino Problem
 PRL 20 1205 (1968)

- Atmospheric Muon Neutrino Deficit
 PRD 18 2239 (1978)
Neutrino Oscillation

if neutrinos have mass...

A neutrino that is produced as a ν_μ

- (e.g. $\pi^+ \rightarrow \mu^+ \nu_\mu$)

might some time later be observed as a ν_e

- (e.g. $\nu_e \, n \rightarrow e^- \, p$)

Pontecorvo, Maki, Nakagawa, Sakata
Neutrino Oscillation

\[
\left(\begin{array}{c} \nu_{\mu} \\ \nu_e \end{array} \right) = \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right) \left(\begin{array}{c} \nu_1 \\ \nu_2 \end{array} \right)
\]

- Consider only two types of neutrinos
- If weak states differ from mass states
 - i.e. \((\nu_{\mu}, \nu_e) \neq (\nu_1, \nu_2)\)
- Then weak states are mixtures of mass states

\[
\left| \nu_\mu(t) \right> = -\sin \theta \left| \nu_1 \right> e^{-iE_1 t} + \cos \theta \left| \nu_2 \right> e^{-iE_2 t}
\]

- Probability to find \(\nu_e\) when you started with \(\nu_\mu\)

\[
P_{osc}(\nu_\mu \rightarrow \nu_e) = \left| \left< \nu_e | \nu_\mu(t) \right> \right|^2
\]
2 fundamental parameters
- $\Delta m_{12}^2 (= m_1^2 - m_2^2) \leftrightarrow$ period
- $\theta_{12} \leftrightarrow$ magnitude

2 experimental parameters
- $L =$ distance travelled
- $E =$ neutrino energy

Tune L & E for Δm^2 range, uncertainties determine θ sensitivity

Neutrino disappearance and appearance

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2(1.27\Delta m_{12}^2 \frac{L}{E})$$
2 fundamental parameters

- $\Delta m^2_{12} (=m_1^2-m_2^2) \leftrightarrow$ period
- $\theta_{12} \leftrightarrow$ magnitude

2 experimental parameters

- $L =$ distance travelled
- $E =$ neutrino energy

Tune L & E for Δm^2 range, uncertainties determine θ sensitivity

Neutrino disappearance and appearance

$$P(\nu_\mu \to \nu_e) = \sin^2 2\theta_{12} \sin^2 (1.27\Delta m^2_{12} \frac{L}{E})$$
2 fundamental parameters
- $\Delta m_{12}^2 (=m_1^2-m_2^2) \leftrightarrow \text{period}$
- $\theta_{12} \leftrightarrow \text{magnitude}$

2 experimental parameters
- $L = \text{distance travelled}$
- $E = \text{neutrino energy}$

Tune L and E for Δm^2 range, uncertainties determine θ sensitivity

Neutrino disappearance and appearance

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2 \left(1.27 \Delta m_{12}^2 \frac{L}{E}\right)$$
$P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m^2_{12} \frac{L}{E})$

- 2 fundamental parameters
 - $\Delta m^2_{12} (=m_1^2-m_2^2)$ ↔ period
 - θ_{12} ↔ magnitude

- 2 experimental parameters
 - L = distance travelled
 - E = neutrino energy

- Tune L & E for Δm^2 range, uncertainties determine θ sensitivity

- Neutrino disappearance and appearance
\[P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2 (1.27\Delta m_{12}^2 \frac{L}{E}) \]

- 2 fundamental parameters
 - \(\Delta m_{12}^2 (=m_1^2-m_2^2) \leftrightarrow \) period
 - \(\theta_{12} \leftrightarrow \) magnitude

- 2 experimental parameters
 - \(L = \) distance travelled
 - \(E = \) neutrino energy

- Tune \(L & E \) for \(\Delta m^2 \) range, uncertainties determine \(\theta \) sensitivity
- Neutrino disappearance and appearance

\(\nu_\mu \rightarrow \nu_\mu \)

\(\nu_\mu \rightarrow \nu_e \)
• 2 fundamental parameters
 • $\Delta m^2_{12} (=m_1^2-m_2^2) \leftrightarrow$ period
 • $\theta_{12} \leftrightarrow$ magnitude

• 2 experimental parameters
 • $L =$ distance travelled
 • $E =$ neutrino energy

• Tune L & E for Δm^2 range, uncertainties determine θ sensitivity

• Neutrino disappearance and appearance

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2 (1.27\Delta m^2_{12} \frac{L}{E})$$
- 2 fundamental parameters
 - $\Delta m_{12}^2 (= m_1^2 - m_2^2) \leftrightarrow$ period
 - $\theta_{12} \leftrightarrow$ magnitude

- 2 experimental parameters
 - $L =$ distance travelled
 - $E =$ neutrino energy

- Tune L & E for Δm^2 range, uncertainties determine θ sensitivity

- Neutrino disappearance and appearance

\[
P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2 (1.27\Delta m_{12}^2 \frac{L}{E})
\]
Discovery

- Super-Kamiokande @ Neutrino 98

• Difference in observed atmospheric muon neutrino fluxes
 • Depending on zenith angle!
 • $5 \times 10^{-4} \text{ eV}^2 < \Delta m^2 < 6 \times 10^{-3} \text{ eV}^2$

PRL 81, 1562 (1998)
Solving Solar Problem

- Sensitive to all flavors
- CC and NC channels
- Neutrinos transform flavor!
- Electron flux = 30% of total neutrino flux
- $\Delta m^2 = 4.6^{+2.8}_{-1.1} \times 10^{-5}$ eV2

$\frac{\phi_{CC}^{SNO}}{\phi_{NC}^{SNO}} = 0.301 \pm 0.033$ (total)

See T. Vahle’s talk for more information on mixing
Confirmation

- Need same L/E to probe same Δm^2 region as atmospheric
- Confirmed with accelerator neutrinos
 - K2K and MINOS
 - $\Delta m^2 = 2.43 \pm 0.13 \times 10^{-3} \text{ eV}^2$

$\nu_\mu + N \rightarrow \mu + X$

K2K: PRL 98, 081802 (2005)
MINOS: PRL 101, 131802 (2008)
Confirmation

- Need same L/E to probe same Δm^2 region as atmospheric
- Confirmed with accelerator neutrinos
 - K2K and MINOS
 - $\Delta m^2 = 2.43\pm0.13 \times 10^{-3}$ eV2

$\nu_\mu + N \rightarrow \mu + X$

Confirming Solar

- Solar oscillation confirmed with reactor antineutrinos
- KamLAND experiment sensitive to antineutrinos from several reactors
 - Similar mixing angle
 - \(\Delta m^2 = 7.58^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2 \)

\(\bar{\nu}_e + p \rightarrow e^+ + n \)

PRL 100, 221803 (2008)
Confirming Solar

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

- Solar oscillation confirmed with reactor antineutrinos
- KamLAND experiment sensitive to antineutrinos from several reactors
 - Similar mixing angle
 - \(\Delta m^2 = 7.58^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2 \)

PRL 100, 221803 (2008)
\[|\nu_\alpha\rangle = \sum_i U_{\alpha i} |\nu_i\rangle \]

Mass Spectrum

Mass (eV)

\[\nu \]
\[\nu \]
\[\nu \]

\[0.05 \] atmospheric
\[0.009 \] solar

flavor key:

\[\nu_e \nu_\mu \nu_\tau \]
Open Questions

- What is the mass hierarchy?
- What is the absolute mass scale?
- What is the nature of neutrino mass?
 - Dirac or Majorana?
- Answers important for theories about origins of neutrino mass
 - Relations to flavor? GUTs?
- Cosmological and astrophysical implications
Absolute Scale of Neutrino Mass
Beta decay endpoint

- Sensitive to $<m_\beta> = \sqrt{\sum |U_{ei}|^2 m_i^2}$
Tritium has short half life but high Q value (18.6 keV)

Previous measurements

- Troitsk: $m_\beta < 2.05$ eV (95% CL)
- Mainz: $m_\beta < 2.3$ eV (95% CL)

Source = 3H
KATRIN

- Powerful T² source (1.7×10¹¹ Bq!)
- Pre-spectrometer removes all βs with no mν information (10⁷ reduction!)
- Excellent energy resolution (0.93 eV)
- Sensitivity: mβ < 200 meV (90% CL) (1000 days)
- Discovery potential: mβ = 350 meV (5σ)

The ultimate tritium decay experiment

http://www-ik.fzk.de/tritium/
Physics Reach

Assuming normal hierarchy

m_i, eV/c^2

Δm_{23}^2

ν_{atm}

Δm_{12}^2

ν_{sol}

LMA

m_1, eV/c^2

m_3 (~ 55 meV/c^2)

m_2 (~ 8 meV/c^2)

Hierarchical ν masses

Mainz & Troitsk

KATRIN

Quasidegenerate ν masses

Rhenium Decay

Bolometers

Source = 187Re

- Rhenium has long half life and low Q value (2.47 keV)
- MIBETA (AgReO4); MANU (metallic Re)
- $m_\beta < 15.0$ eV (90% CL)

When in presence of decays to excited states, the calorimeter measures both the electron and the de-excitation energy.

- high energy resolution
 - differential spectrum: dN/dE

$PRL \ 91, \ 161802 \ (2003)$

$MARE \ Proposal$
MARE

New collaboration: MANU + MIBETA + US groups

- Phase 1: Improve by factor 10
 - \(m_\beta < 2 \text{ eV} \)
 - \(10^{10} \beta \text{ decays} \)
 - Exploring detector options
- Phase 2: Another factor 10
 - \(m_\beta < 0.2 \text{ eV} \)
 - \(10^{14} \beta \text{ decays} \)
 - R&D for new detector technology
 - Magnetic micro-calorimeter with SQUID readout
- Goal: 2015

Scalable technology
Cosmology

- m_ν can be inferred from cosmological data + cosmological assumptions
 - $\sum m_i < (0.17 - 0.32) \text{ eV}$

- Degeneracies between some parameters
 - H_0 and m_ν

- Best approach:
 - Observe neutrino mass, then use as cosmological input
The Nature of Neutrino Mass

CUORE

NEMO3

SNO+
Double Beta Decay

- Can happen if single β decay is energetically forbidden
- $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\nu$
- If $\nu = \bar{\nu}$, then can have $0\nu\beta\beta$ decay
- $(A,Z) \rightarrow (A,Z+2) + 2e^-$
- Best way to search for Majorana particles

$1/\tau = G(Q,Z) |M|^2 <m_{\beta\beta}>^2$

$m_{\beta\beta} = \sum |U_{ei}|^2 m_i^2 \varepsilon_i$
Experimental techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Nuclei</th>
<th>Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolometers</td>
<td>130Te</td>
<td>CUORICINO \rightarrow CUORE</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>76Ge</td>
<td>Heidelberg-Moscow, GERDA, MAJORANA, COBRA</td>
</tr>
<tr>
<td>Scintillators</td>
<td>48Ca, 116Cd, 150Nd</td>
<td>MOON, CANDLES, ELEGANT, KIEV, SNO+</td>
</tr>
<tr>
<td>Xenon</td>
<td>136Xe</td>
<td>EXO, XMASS, NEXT</td>
</tr>
<tr>
<td>Tracker/Calo</td>
<td>Ca, Cd, 100Mo, Nd, Se, Te, 96Zr</td>
<td>NEMO3 \rightarrow SuperNEMO</td>
</tr>
</tbody>
</table>

More detailed info in Session D.10 Sat 3:30 pm, Governor’s Square
Current Limits

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Nucleus</th>
<th>Mass Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUORICINO</td>
<td>130Te</td>
<td>$m_{\beta\beta} < (0.2-0.68)$ eV</td>
</tr>
<tr>
<td>NEMO3</td>
<td>100Mo</td>
<td>$m_{\beta\beta} < (0.8-1.3)$ eV</td>
</tr>
<tr>
<td>NEMO3</td>
<td>82Se</td>
<td>$m_{\beta\beta} < (1.4-2.2)$ eV</td>
</tr>
<tr>
<td>ELEGANT V</td>
<td>100Mo</td>
<td>$m_{\beta\beta} < 1.7$ eV</td>
</tr>
<tr>
<td>NEMO3</td>
<td>150Nd</td>
<td>$m_{\beta\beta} < (1.7-2.4)$ eV</td>
</tr>
<tr>
<td>NEMO3</td>
<td>96Zr</td>
<td>$m_{\beta\beta} < (7.4-20.1)$ eV</td>
</tr>
<tr>
<td>NEMO3</td>
<td>48Ca</td>
<td>$m_{\beta\beta} < 29.6$ eV</td>
</tr>
</tbody>
</table>

Ranges due to nuclear matrix elements
Future Mass reach

Not a complete list!

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Nucleus</th>
<th>Mass Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERDA</td>
<td>⁷⁶Ge</td>
<td>$m_\nu < 0.11\text{-}0.27\text{ eV}$</td>
</tr>
<tr>
<td>MAJORANA</td>
<td>⁷⁶Ge</td>
<td>$m_\nu < 0.12\text{ eV}$</td>
</tr>
<tr>
<td>NEXT</td>
<td>¹³⁶Xe</td>
<td>$m_\nu < 0.06\text{ eV}$</td>
</tr>
<tr>
<td>SNO+</td>
<td>¹⁵⁰Nd</td>
<td>$m_\nu < 0.04\text{ eV}$</td>
</tr>
<tr>
<td>CUORE</td>
<td>¹³⁰Te</td>
<td>$m_\nu < (0.014\text{-}0.047)\text{ eV}$</td>
</tr>
<tr>
<td>SuperNEMO</td>
<td>⁸²Se or ¹⁵⁰Nd</td>
<td>$m_\nu < (0.04\text{-}0.11)\text{ eV}$</td>
</tr>
<tr>
<td>EXO</td>
<td>¹³⁶Xe</td>
<td>$m_\nu < (0.005\text{-}0.007)\text{ eV}$</td>
</tr>
</tbody>
</table>
Observation?

- In 2001, a subgroup of the Heidelberg-Moscow experiment (^{76}Ge) released a discovery claim.
- Somewhat controversial.
- $T_{1/2}^{0\nu} = 1.2 \times 10^{25}$ y
- $m_{\beta\beta} = 440$ meV (4.2σ)

Observation?

• In 2001, a subgroup of the Heidelberg-Moscow experiment (\(^{76}\)Ge) released a discovery claim

• Somewhat controversial

• \(T_{1/2}^{0\nu} = 1.2 \times 10^{25} \text{ y}\)

• \(m_{\beta\beta} = 440 \text{ meV (4.2}\sigma)\)
Mass Reach

see Engel’s talk in session Q.2, Monday 10:45 in Plaza D
All planned experiments can test the 440 meV claim.

- DISCOVERY CLAIM REGION
 - GERDA II
 - Majorana (30 kg, 3 yr)
 - SuperNEMO (~2016)
 - NEXT (100 kg, 10 yr)
 - SNO+ (10 years, enriched)
 - CUORE (5 year, low background)
 - EXO (1-10 ton w/ Ba tagging)

see Engel’s talk in session Q.2, Monday 10:45 in Plaza D
Summary: Open Questions

- Neutrinos have mass!
- Moving from discovery to precision era
- What is the mass hierarchy?
- What is the absolute scale?
- Are they Majorana or Dirac?
- Why are they so small?

Worldwide program of experiments to answer these!
Thank you!

Denver Skyline
Sign of Δm^2

- $\Delta m^2_{ij} = m_i^2 - m_j^2$
- Solar experiments explained by MSW (matter) effects
 - Resonant enhancement of oscillation \Rightarrow sun emits ν_2
 - $m_2 > m_1$
- No such information (yet) for Δm^2_{23}
 - Need to observe matter effects in θ_{13} measurement ν and $\bar{\nu}$ to sort that out
 - NOvA + T2K + Reactors

See T. Vahle’s talk for more information