Rutherford's Legacy in Particle Physics: Exploring the Proton

Jerome I. Friedman MIT

Rutherford's Legacy: Scattering Can Uncover Structure of Matter

Quarks in Protons & Neutrons

Rutherford in His Laboratory

Confirmed "solar system" model : ATOMIC NUCLEUS DISCOVERED

Structure of Atomic Nucleus Uncovered

Proton Discovered in 1919 Neutron Discovered in 1932

Are they Fundamental Particles ?

Prevailing model of the proton in the 1960's

NUCLEAR DEMOCRACY BOOTSTRAP MODEL Particles are composites of one another

$$p = \underline{\pi}n + \dots$$
$$\tilde{n} \quad \tilde{\pi}p + \dots$$

Particles have diffuse substructures and no elementary building blocks **1964 Gell-Mann & Zweig** proposed that protons and neutrons and other particles are composed of spin 1/2 constituents - QUARKS

3 types

UP, DOWN, STRANGE

they have fractional charges

UP (+2/3) DOWN (-1/3) STRANGE (-1/3)

proton = (u, u, d)

Are Quarks Real?

MANY UNSUCCESSFUL SEARCHES

 Accelerators, Cosmic rays, Terrestrial environment Sea water, Meteorites, Air, etc.

FRACTIONAL CHARGES

- Considered by many to be unreasonable

<u>GENERAL POINT OF VIEW IN 1966</u> Quarks most likely just mathematical representations Useful but NOT real !

Particles have diffuse substructures and no elementary building blocks

Implausibility of Quark Model

"...the idea that mesons and baryons are made primarily of quarks is hard to believe.."

M. Gell-Mann 1966

"Additional d ata are necessary and very welcome to destroy the picture of elementary constituents."

J. Bjorken 1967

"I think Professor Bjorken and I constructed the sum rules in the hope of destroying the quark mod el."

K. Gottfried 1967

"Of course the whole quark idea is ill founded."

J.J. Kokkedee 1969

SLAC Starts Operation in 1966

- CIT-MIT-SLAC Collaboration designed and constructed spectrometer complex to study structure of proton, utilizing ELASTIC SCATTERING
- Electron ideal probe:
 - Structure known: "point particle"
 - Interaction understood: QED

In 1950's, Hofstadter used Elastic e-p scattering to measure the proton's form factor & r.m.s. radius

Stanford Linear Accelerator

SLAC Magnetic Spectrometers

Magnetic Form Factor of Proton

Extended earlier measurements at CEA & DESY

1967 MIT-SLAC begins Inelastic Program $e + p \Rightarrow e + Anything$

Inelastic vs. Elastic Scattering

- Elastic scattering provides information about the charge and magnetic moment distributions averaged over time
- Inelastic scattering can provide a "snapshot" of the structure $\Delta t \approx h/\Delta E$

 ΔE is energy lost by electron.

 $\Delta E = 2 \text{ GeV} \qquad \Delta t = 3 \times 10^{-25} \text{ SeC}$

for
$$\mathbf{v} \approx \mathbf{c}$$

motion during "snapshot" is

 \approx 10⁻¹⁴ cm.

DEEP INELASTIC SCATTERING REQUIRED FOR LARGE AE

MIT - SLAC Group

W.B. Atwood	C.L. Jordan
E.D. Bloom	H.W. Kendall
A. Bodek	<u>M. Mestayer</u>
<u>M. Breidenbad</u>	<u>G. Miller</u>
C. Buschhorn	L.Mo
R.L.A. Cottrell	H. Piel
D. Coward	J.S. Poucher
H. DeStaebler	<u>M. Riordan</u>
<u>R. Ditzler</u>	D. Sherden
J. Drees	M. Sogard
J. Elias	S. Stein
J.I. Friedman	R.E. Taylor
G. Hartmann	R. Verdier

$$p^{\dagger} = (E^{\dagger}, \overline{p}^{\dagger})$$

$$p = (E, \overline{p})$$

$$P = (M, O)$$

$$Invariants$$

$$v = P.q /M = E - E'$$

$$q^{2} = -(p - p')^{2} = 4EE' \sin^{2}(\theta/2)$$

$$W^{2} = 2M_{V} + M^{2} - q^{2}$$

Two Major Surprises

Bjorken Scaling of Structure Functions

Weak q² dependence of Structure Functions

Experimental Test of Scaling

Test of Scaling 2

Comparison of e-Carbon & e-p Scattering

e-p Cross-sections divided by Mott Cross-section

<u>Non-Constituent</u> <u>Models proposed</u> to explain Scaling

"OLD PHYSICS"

Vector Dominance Resonance Models { Veneziano N's and Δ 's Regge Poles Diffraction Models

n/p Scattering

From Comparison of e + d & e + p Inelastic Scattering

<u>COMPARISON OF</u> O_n/O_p

WITH MODELS

Model	σ_n/σ_p at x $pprox$ 0.85				
Diffraction	1				
Resonance	~ 0.7				
Regge	\sim 0.6				
Duality	0.47				
Parton (Bare Nucleon +	0.10 Pions)				
Quark	≥0.25				

Experiment

 $0.30\pm.03$

Many attempts were made to use "Old Physics" to explain results without success

But Quark Model was not regarded as valid by most physicists

Theoretical contribution that helped resolve puzzle

Feynman's PARTON MODEL

Parton Model (Feynman 1968)

- 1) Electrons scatter from bound constituents (partons)
- 2) Partons recoil and interact internally, producing known particles, π ' s, K' s, etc.
- 3) If partons are point-like, F_2 and F_1 scale in X = q²/2Mv = 1/ ω
- 4) Scaling variable x is fractional momentum of struck Parton
- 5) $F_2(x)$ is related to momentum distribution of Partons in proton

If Partons are Quarks

1) They must be spin 1/2 particles

2) They must have fractional charges consistent with the quark model

Comparisons of forward and backward scattering answered the question: What is the the spin of the partons?

F₂(x) Sum Rule Provided Information about Parton Charges

$$\int_{1}^{\infty} \frac{\nu W_2}{\omega^2} d\omega = \int_{0}^{1} F_2(x) dx = \langle Q^2 \rangle * \begin{pmatrix} Fraction of Nucleon's Momentum carried by Partons \end{pmatrix}$$
If Partons are Quarks
$$\frac{1}{2} \int \frac{[\nu W_2^P + \nu W_2^n] d\omega}{\omega^2} = \frac{1}{2} \int [F_2^P(x) + F_2^n(x)] dx$$

$$= \left[\frac{Q_u^2 + Q_d^2}{2} \right] * \begin{pmatrix} Fraction of Nucleon's Momentum carried by Quarks \end{pmatrix}$$

$$= \left[\frac{5}{18} \right] * \left\{ ? \right\}$$
0.28

Experiment \Rightarrow 0.14 ±.006

CONCLUSION: CONSISTENT WITH QUARK MODEL IF * QUARKS CARRY 1/2 MOMENTUM * GLUONS CARRY OTHER HALF Do Partons have Fractional Charges (+2/3, -1/3)?

- Comparisons of Electron Scattering and Neutrino Scattering provided the answer.
- First neutrino results came from Large Heavy Liquid Bubble Chamber "Gargamelle" (1971-1974)

GARGAMELLE

Neutrino and Anti-neutrino Scattering

Linear rise of scattering cross sections confirmed point-like constituents in proton and neutron

Comparison of electron & neutrino scattering in the quark model (1972-1974) $\frac{\int [F_2^{\nu n}(x) + F_2^{\nu p}(x)]dx}{\int [F_2^{en}(x) + F_2^{ep}(x)]dx} =$

$$= \frac{2}{(Q_u^2 + Q_d^2)}$$
$$= \frac{2}{(2/3)^2 + (1/3)^2}$$
$$= 3.6$$

Experimental Value (MIT-SLAC, CERN) = 3.4 ± 0.7

VALIDATION OF QUARK MODEL

First comparison of $F_2^{\nu N}$ measured in ν -nucleon scattering in the Gargamelle heavy-liquid Bubble chamber at CERN.

1974

OTHER NEUTRINO RESULTS

$$+ \frac{1}{2} \int \left[F_2^{\nu p}(x) + F_2^{\nu n}(x) \right] dx = \left(\begin{array}{c} \text{Total Fraction of} \\ \text{Nucleon's Momentum} \\ \text{carried by Quarks} \end{array} \right)$$

Experimental Value (Gargamelle) = 0.49 ±.07

Half of Momentum carried by Quarks as suggested by Electron Scattering results

*
$$\frac{1}{2}\int [F_3^{\nu p}(x) + F_3^{\nu n}(x)] dx =$$
 Number of
Valence Quarks
= 3

Experimental Value (Gargamelle) = 3.2 ±0.6 Consistent with Quark Model There have been a number of important experiments that provided further verification of the quark model and discovered new quarks.

Properties of Quarks

Flavor	u	d	S	С	b	t
Mass	~ 2 MeV	~ 5 MeV	~100 MeV	~ 1.3 GeV	~ 4 GeV	173 GeV
Charge	2/3	-1/3	-1/3	2/3	-1/3	2/3
Spin	1/2	1/2	1/2	1/2	1/2	1/2

SIZE OF QUARKS < 10^{-17} cm.

In addition to his seminal discoveries, Rutherford has provided a legacy that has advanced nuclear and particle physics and continues to uncover the structure of matter