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Vortex Cavitation   
•  Regions of concentrated vorticity can 

form in many flows: 
–  Tip Vortices 
–  Leakage Vortices 
–  Wake Vortices 
–  Turbulent Shear Flows 

•  The pressure in the core of the vortex is 
lower than that of the surrounding fluid. 

•  Small bubbles (nuclei) in the core of the 
vortex grow when exposed to the low 
pressure. 

Reviewed by Arndt (2002), Annual Reviews of Fluid Mechanics 
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Vortex Cavitation in Turbomachinery 

 Issue: Incipient Tip Leakage Cavitation can 
be detected acoustically well before visual 

inception on ducted rotors. 

NSWC-CD 36” Water Tunnel 

Issue: TLC Inception occurs at 
higher than expected cavitation 

numbers. 

Objective: Understand the physical 
processes leading to TLV inception 
by studying a canonical open and 

ducted rotors up to 1 meter in 
diameter. 
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Tip Leakage Cavitation  

Rotation 



5 

S = 0.016 

S = 0.476 

PIV Measurements of Vortical Flow  
In Tip Leakage Region 

Identification of High Vorticity Regions 
Can Be Lost Through Phase Averaging!

Oweis, Fry, Chesnakas, Jessup, and 
Ceccio, JFE, (2005a) (2005b)!
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Identification of High Vorticity Regions Can Be Lost Through Phase Averaging!

PIV reveals time variation in vortex patterns, spatial positions, and properties!
Oweis and Ceccio, EIF, (2005).!
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Sometimes TLV Cavitation Made a “Popping” or “Chirping” Sound  
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Incipient TLV cavitation and an accompanying noise signal.   
(Chesnakas and Jessup, Proc. ASME, 2003) 

“Pop!” 

“Chirp!” 

“Squeak!” 
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Prediction of Inception Pressure and Location is Difficult 
Measured Vortex Core Properties: 
•  Instantaneous circulations. ΓO, and core 

sizes, a, are measured. 
•  The typical (average) pressure drop in 

the core is determined: 

•  Pressure coefficient is determined as a 
function of downstream distance, s/c. 

Unexpected Findings 
•  Inception occurred downstream of the 

minimum mean pressure location on the 5206 
and 5407 rotors. 

•  Inception occurs at much higher pressures. 
•  Inception controlled by unsteady pressures. 
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•  How are nuclei captured by the vortex? 

•  What causes the core pressure of the cavitating 
vortex to be suddenly reduced?  (Merging, stretching, axial 
core jet/wakes in the vortex?) 

•  How does the TVC bubble make noise? (Is noise 
produced during growth, convection, and/or collapse?) 

Basic Experiments Were Conducted to Address Basic TVC Flows 

Choi and Ceccio, JFM, (2007) 
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Vortex Cavitation Bubbles in a Single Vortex 

9- Inch Cavitation Tunnel at the University of Michigan 
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4.20 +/-0.230.302 +/-0.0153.75 +/-0.200.257 +/-0.013
Foil with roughness 

(R)

5.15 +/-0.350.288 +/-0.0184.76 +/-0.310.252 +/-0.015
Foil with trip 

(T)

rC,  mmΓO , m2/srC, mmΓO, m2/s

α=4.5O (2)α=4O (1)

4.20 +/-0.230.302 +/-0.0153.75 +/-0.200.257 +/-0.013
Foil with roughness 

(R)

5.15 +/-0.350.288 +/-0.0184.76 +/-0.310.252 +/-0.015
Foil with trip 

(T)

rC,  mmΓO , m2/srC, mmΓO, m2/s

α=4.5O (2)α=4O (1)

 

Inlet Vortex Properties for Four Conditions 

SPIV Measurements of Mean Flow. 
Axial jet/wake in the vortex core was not present. 

Foil With Trip 
(T) 

Foil Without Trip 
(T) 
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Vortex Is passed Through a Venturi to  
Lower and Recover Surrounding Static  Pressure 

 CP=(PC(z)-P∞)/(ρ(βΓo/(2πrC)2/2)	


•  Measured pressure along the 
Venturi with 6 pressure taps. 

•  Pressures used to estimate the 
loss coefficients for the throat, 
straight passage, and diffuser. 

•  The vortex core axial velocity 
estimated using relation derived 
by Darmfil et al. (2001). 

•  The vortex core pressure is 
then computed. 
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(a) Τ1	
 (b) Τ2	


(c) R1	
 (d) R2	
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Results are very sensitive to small variations in vortex properties. 
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Detectable noise is produced by growth, fission (infrequently), and collapse. 
No “chirps” were detected  

The acoustic impulse is 2 orders of magnitude less than that produced by nearly spherical bubbles. 
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Size Scaling of 2-Dimensional Elongated Vortex Cavitation Bubble Radius 
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Conserve angular momentum and kinetic energy 
Vapor pressure on the bubble surface 

Flow field is modified Gaussian. 
γ  is related to the tangential fluid velocity at the bubble interface. 

Maximum bubble 
angular velocity 

rb 

γ =0 γ  =1  Minimum bubble 
angular velocity 
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Dynamics of Two-Dimensional and Axisymmetric Vortex Bubble Dynamics 
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Scaling of Two-Dimensional and Vortex Bubble Dynamics 
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(a) Growth of the two-dimensional bubble as a function of time for  Γ0 = 0.2, rC = 4 mm, with ΔT/ τv = 1.0.  The results 
for nine cavitation numbers are shown, σC = 0.05,-0.1,-0.2,-0.4,-0.5,-0.6,-0.8,-1.0; (b) Growth of the bubble for σC = -0.3, 

with ΔT/ τv = 0.25, 0.6, and 1.2.	
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Vorticity Redistribution Leads To Dynamic Compliance 
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Volume history of three dimensional bubble geometry during growing for (a) ReΓ  = 2 x 105 and σC =-0.4, for and ΔΤ/τv = 
0.46 (b) ΔΤ/τv = 1.13.  Also shown is the volume history for (c) ReΓ  = 4 x 105 and, σC = -0.4, and ΔΤ/τv = 0.23.	


t/τv = 0.25	
 t/τv = 0.5	
 t/τv = 0.75	
 t/τv = 1	


t/τv = 0.25	
 t/τv = 0.38	
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 t/τv = 0.75	
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 t/τv = 0.19	
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τ/τ* = 6, ReΓ  = 4x105 , Lb/Db = 2 and σC = 0.3 

Higher static pressure region 
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Summary Of Single Vortex Results 
•  Single vortex scaling methods will often not capture the physics 

responsible for TVC cavitation, especially when multiple 
interacting vortices are present. 

•  There were no experimental observations of chirping bubbles in 
the single vortex experiment. 

•  Analysis and numerical modeling suggest that chirping bubbles 
occur when there is a variation in angular momentum due to the 
change in the elongated bubble radius that couples into the 
pressure at the bubble interface.  

•  The analysis suggests that the rate of pressure changes 
surrounding the nucleus is important. 



We therefore need to vary the rate of pressure reduction and 
recovery surrounding the bubble. 

This can be achieved with vortex-vortex interactions. 

Summary Of Single Vortex Results 
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UM Visualizations of cavitating  
co-rotating vortices. 
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UM Visualizations of cavitating  
counter-rotating vortices. 

Primary Vortex 

Secondary 
Vortex 
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run # Γ O,P , m 2/S Γ O,S , m 2/S r C,P , mm r C,S , mm Γ O,S /Γ O,P b , mm (r C,S +r C,P )/(2b ) Re Γ ,P CP,C,P C P,C,S Ratio Incepting Vortex Instability
T1 0.252 - 4.76 - - - - 252000 -1.24 - - - -
T2 0.288 - 5.15 - - - - 288000 -1.38 - - - -
R1 0.257 - 3.75 - - - - 257000 -2.07 - - - -
R2 0.288 - 4.2 - - - - 288000 -2.07 - - - -
D1 -0.2915 0.0617 5.6 2.9 -0.21 23 0.185 291500 -1.19 -0.20 6.0 Primary O
D2 -0.2916 0.0633 5.9 3.3 -0.22 21 0.219 291600 -1.08 -0.16 6.6 Simultaneous O
D3 -0.2283 0.051 5.1 2.7 -0.22 22 0.177 228300 -0.88 -0.16 5.6 Primary O
D4 -0.2976 0.0686 5.7 3.4 -0.23 21 0.217 297600 -1.20 -0.18 6.7 Secondary O
D5 -0.2745 0.0662 5.3 2.7 -0.24 22 0.182 274500 -1.18 -0.26 4.5 Secondary O
D6 -0.2266 0.0579 6 3.7 -0.26 21 0.231 226600 -0.63 -0.11 5.8 Secondary O
D7 -0.2708 0.0798 6.2 3.7 -0.29 22 0.225 270800 -0.84 -0.21 4.1 Secondary O
D8 -0.2226 0.0683 5.2 3.2 -0.31 22 0.191 222600 -0.81 -0.20 4.0 Primary O
D9 -0.2621 0.0885 5.2 3 -0.34 21 0.195 262100 -1.12 -0.38 2.9 Secondary O
D10 -0.2184 0.081 4.9 3 -0.37 21 0.188 218400 -0.88 -0.32 2.7 Primary O
D11 -0.2671 0.1062 6.1 4.1 -0.40 21 0.243 267100 -0.85 -0.30 2.9 Secondary O
D12 0.1106 -0.0519 4.3 3.3 -0.47 18 0.211 110600 -0.29 -0.11 2.7 Primary X
D13 0.1439 -0.08 3.5 3.7 -0.56 19 0.189 143900 -0.75 -0.21 3.6 Primary X
D14 0.1627 -0.096 4 3.5 -0.59 20 0.188 162700 -0.73 -0.33 2.2 Primary X
D15 0.1849 -0.112 4.3 3.9 -0.61 19 0.216 184900 -0.81 -0.36 2.2 Primary X
D16 0.1697 -0.1267 4 3.7 -0.75 20 0.193 169700 -0.79 -0.52 1.5 Secondary O
D17 0.1638 -0.1236 3.9 3.6 -0.75 20 0.188 163800 -0.78 -0.52 1.5 Secondary O  

Counter-Rotating Vortex Pairs Examined  

Some combinations are unstable, 
and the weaker secondary vortex cavitates first 
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Vortex Inception in the Secondary Vortex 

152 mm x 61 mm 

2600 FPS 
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Growing Case Makes a “Pop” 

-0.906msec -0.137msec 1.402msec 3.710msec 

hydrophone 
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Collapsing Case Makes a “Pop” 

-5.655msec -4.117msec -1.810msec -0.272msec 
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“Chirping” After Inception 

-0.323msec 0.446msec 1.601msec 3.524msec 

ΓS = 0.06 m2/s,  
rC,S= 0.6 mm  

(after stretching)       
τV = 3 kHz! 
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-0.152msec 1.387msec 3.309msec 5.232msec 

“Chirping” After Inception 
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Acoustic Pressure: Inferred and Measured  

Acoustic Pressure 

Acoustic Pressure Computed 
From Measured Volume 

Acceleration 

Pest ≈
ρw
4πR

∂2Q
∂t 2

P = 170kPa 
DO = 25% 
σ∞  =  3.3 

1 cm 
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P = 170kPa 
DO = 25% 
σ∞ = 3.3 

1 cm 

f ~ 4 kHz 
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Probability of a Chirp Is Related to Nuclei Size  
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Some Conclusions About TVC Inception and Acoustics 

•  Single vortex scaling methods will often not capture the physics 
responsible for TVC cavitation, especially when multiple 
interacting vortices are present. 

•  Bubble-Vortex Interactions are important for understanding the 
dynamics and noise emissions of elongated vortex bubbles. 

•  A combination of experimental, analytical, and numerical tools are 
available to understand and (possibly) predict TVC cavitation 
since there is likely no single scaling method which captures all 
the necessary physics. 

•  The bubble could be used as a flow diagnostic (!) 
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