Unsteadiness of Shock Wave / Turbulent Boundary Layer Interactions

Noel Clemens

Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

Acknowledgements

David Dolling, B. Ganapathisubramani, Steve Beresh, Yongxi Hou, Justin Wagner, Venkat Narayanaswamy

Sponsor: AFOSR and ARO

Copyright Noel Clemens, 2009

Shock Interactions

Common feature of high-speed flight

Inlet instability and unstart

Shock Motion

- Stationary normal shock
 - Shock strength $P_2/P_1 = f(M_1)$

Inviscid shock

$$M_1 \quad \Delta M \quad M_2$$

 $P_1 \quad P_2 + \Delta P$

 Shocks will move owing to changing upstream / downstream conditions

Interaction with Boundary Layer M_1 M_2 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

SWBLI – Flow Structure

SWBLI – Interaction Strength

- As interaction strengthens
 - Separated flow scale increases, L_{sep}
 - Intermittent region length increases, L_i
 - Characteristic shock foot frequency decreases
 - Separation shock rides on top of the separation bubble

SWTBLI Unsteadiness

10 kHz planar laser scattering (PLS) of a Mach 2 compression ramp SWTBLI (Wagner, U. Texas)

- Dominant boundary layer frequency: $O(U_{\infty}/\delta_0)$
- Dominant shock foot motion frequency: O(0.01 U_{∞}/δ_0)

SWBLI Unsteadiness

Same movie low-pass filtered to 1 kHz

Source of Separated Flow Unsteadiness?

Most investigators have emphasized one of two mechanisms

- Forcing by upstream turbulent boundary layer
- Global instability intrinsic to separated flow

Source of Unsteadiness:

Forcing by Upstream Turbulent Boundary Layer

intermittent and separated flow regions."

VLES of a Mach 3 Compression Ramp

- Hunt & Nixon (1995) were first to compute unsteady
 SWBLI
 - Very large-eddy simulation of Dolling & Murphy (1983) experiment
 - Showed shock foot nearly linearly correlated with upstream velocity fluctuations

Source of Low-Frequency Unsteadiness?

- Rises/falls in Pitot pressure in upstream boundary layer were correlated with shock-foot motion (McClure & Dolling, 1992; Unalmis & Dolling, 1994)
- Characteristic structures 20δ to 40δ long

- They argued for a thickening/thinning mechanism
 - Thickening $BL \rightarrow$ shock foot moves upstream
 - Thinning $BL \rightarrow$ shock foot moves downstream

Mach 5 Compression Ramp Interaction

Simultaneous PIV and wall-pressure (Beresh et al. 2002)

- No thickening / thinning mechanism observed
- Correlation of shock *motion* with fluctuations in lower part of boundary layer

Mach 2 Compression Interaction

• Wide-field PIV gives global flowfield of Mach 2 compression ramp interactions

Hou (2002)

Conditionally-Averaged Velocity Fields

Hou (2002)

- Separation shock responds to breathing of separated flow
- Clear correlation of separated flow scale with upstream boundary layer thickness

Characterization of Upstream Mach 2 Boundary Layer

6 kHz Plan-View PIV

High-Speed Plan View PIV

Successive vector fields displaced in the streamwise direction by $\Delta x = -kU_c\Delta t$ ($\Delta t = 166 \ \mu s$, $U_c = 0.9U_{\infty}$, k = integer)

k = 1 k = 0

Superstructures

PIV Imaging of Mach 2 Compression Ramp Interactions

Mach 2 Compression Ramp Interactions

We now consider SWTBLI generated by a 20° compression ramp in a Mach 2 flow

Objective is to correlate upstream velocity fluctuations with location of separated flow surrogate

Define separation line surrogate

Copyright Noel Clemens, 2009

Identify point on separation line

Copyright Noel Clemens, 2009

Compute average velocity along line shown

Low-Pass Filtered 6-kHz PIV Movie

Low-Pass Filtered Data

Ganapathisubramani, Clemens, Dolling (2006, 2009)

Source of Unsteadiness:

Downstream Mechanism

DNS Mach 3 Compression Ramp

- Correlation at $y/\delta_0=0.2$ only 0.23
- Superstructures cause spanwise undulations of separation line but not large-scale streamwise motion
- Proposed bubble pulsation due to a wake-like instability of the shear layer similar to cavity or backstep flows

Conditional Boundary Layer Profiles

Mach 2 incident-shock interactions

- Piponniau et al. (2009) and Souverein et al. (2009) obtained average velocity profiles conditioned upon separation shock location
- Difference observed in incipiently separated case, not in strongly separated
- Suggests upstream mechanism diminishes with increasing strength of separation

Shear Layer Entrainment Mechanism

- Wu & Martin (2008): shear layer flaps owing to imbalance in (i) the entrainment rate of the shear layer and (ii) the separation bubble re-charge rate near reattachment
- Piponniau et al. (2009) proposed similar model and obtained Strouhal number scaling with Mach number
- Concluded shear layer / bubble instability as a universal mechanism that drives separated flows

Can we reconcile these views?

Strength of Interactions

- Dussauge & Piponniau (2008) argued that *incipiently* separated interactions are primarily driven by upstream boundary layer
- Clemens & Narayanaswamy (2009) extended this concept to explore effect of separated flow scale
- Souverein et al. (2009) investigated effect of separated flow scale upstream mechanism

Strength of Interactions

Authors	М	Configuration	Re ₀	L_{sep}/δ_0	US / DS
Dupont et al. (2006)	2.3	impinging shock from 8° shock generator	6900	≈4.3*	DS
Dupont et al. (2006)	2.3	impinging shock from 9.5° shock generator	6900	≈5*	DS
Wu & Martin (2006)	2.9	24° compression corner	2390	4.2	DS
Touber & Sandham (2008)	2.3	impinging shock from 8° shock generator	5900	4.5	DS
Humble et al. (2009)	2.1	impinging shock from 10° shock generator	49000	<1	US
Ganapathisubramani et al. (2006)	2	28° compression corner	35000	2	US
Beresh et al. (2002)	4.95	24° compression corner	35000	2	US
Erengil & Dolling (1993)	4.95	24° compression corner	35000	2	US / DS
Thomas et al. (1994)	1.5	6-12° compression corner	17000	<2	DS
Brusniak and Dolling (1994)	4.95	Blunt fin	31600	≈3	US / DS

Strength of Interactions

Authors	М	Configuration	Re ₀	L_{sep}/δ_0	US/DS
					Influence
Dupont et al. (2006)	2.3	impinging shock from	6900	≈4.3*	DS
		8° shock generator			
Dupont et al. (2006)	2.3	impinging shock from	6900	$\approx 5^*$	DS
		9.5° shock generator			
Wu & Martin (2006)	2.9	24° compression corner	2390	4.2	DS
Touber & Sandham	2.3	impinging shock from	5900	4.5	DS
(2008)		8° shock generator			
Humble et al. (2009)	2.1	impinging shock from	49000	<1	US
		10° shock generator			
Ganapathisubramani	2	28° compression corner	35000	2	US
et al. (2006)					
Beresh et al. (2002)	4.95	24° compression corner	35000	2	US
Erengil & Dolling	4.95	24° compression corner	35000	2	US / DS
(1993)					
Thomas et al. (1994)	1.5	6-12° compression	17000	<2	DS
		corner			
Brusniak and Dolling	4.95	Blunt fin	31600	≈3	US / DS
(1994)					

Our View

- 'Upstream-only' or 'downstream-only' mechanisms are too simplistic*
- We argue that both mechanisms are always present in all SBLIs but:
- As separation bubble grows, upstream fluctuations become less effective at moving the separation line
 - Momentum fluctuations cannot overcome pressure rise across separation shock
- The bubble expands / contracts by some sort of large-scale instability (Wu & Martin, 2008; Piponniau et al., 2009)

*Similar (but subtly different) view recently proposed by Dussauge's group (Souverein et al., 2009)

Example of both mechanisms?

Correlation coefficient between ρ u(t) and S(t) = 0.3

Correlation coefficient between S(t) and R(t) = -0.35

Separation equally affected by upstream and downstream mechanisms?

Is there an upstream role for strong interactions?

Na & Moin (1998): DNS of incompressible separation

- Fluctuations in upstream boundary layer can seed shear layer that grow and cause flapping of separation point
- We see evidence of this in plasma-jet forcing experiments

What about superstructures?

- Most important velocity (momentum) fluctuations are those closest to the wall (Beresh et al., 2002; Wu & Martin, 2008; Na & Moin, 1998)
- Superstructures observed in the log-region likely not as relevant as near-wall shear stress fluctuations
- Superstructures distracted us from looking closer to wall
- We do believe superstructures represent a 'broader truth'
 - Turbulent boundary layers need to exhibit very low frequency content to couple flow instabilities (even in weak interactions)
 - Superstructures do impose their footprint on the wall shear stress (Hutchins & Marusic, 2007)

Conclusions

- We are close to having a comprehensive understanding of unsteadiness of shock-induced turbulent separation
- Interactions will exhibit varying degrees of upstream and downstream effects depending on the scale of separation
- High-speed vehicles exhibit very high Re and so interactions will likely be intermittently separated
 - Practical interactions are likely to remain sensitive to upstream mechanism