The Francois Frenkiel Award Lecture: Fundamental aspects of Concentration Polarization

Todd Squires Aditya Khair Chemical Engineering University of California, Santa Barbara

Electrokinetic effects

Electrokinetic effects Field-driven motion Flow-driven fields Streaming potential Electro-osmotic Diffuse ions flow Current qE $\begin{array}{c} \oplus \\ \end{array}$ $\oplus \oplus \oplus$ 66 fluid flow, Electric particle motion fields Electrophoresis Happy 200th Birthday! "Notice sur un nouvel effet de l'électricité galvanique"

F.F. Reuss 1809

(Wikipedia)

Broader impacts of electrokinetics research

Convective charge separation in low-conductivity fluids

Streaming potential

Broader impacts of electrokinetics research

Convective charge separation in low-conductivity fluids

QuickTime[™] and a decompressor are needed to see this picture.

Source: youtube

Potentially highly transformative, in the exothermic sense My Outreach to you: please remember to ground your gas containers.

A modern renaissance in electrokinetics

Microfabrication:

Fields and flows provide many new ways to control micro & nano-scale transport

Biotin

Neutra

region

Avidin

Positive

region

DNA translocation

Keyser et al. 2006

Nanofluidic Diode

Energy Harvesting

(b)

side 1

300 nm

nanochanne

nanochannel

side 2

Karnik et al. 2007

van der Heyden et al. 2007

Overlimiting Currents in Electrochemical Systems

Yossifon & Chang 2008

Concentration Polarization at Micro/Nano Interfaces

Kim et al. 2005

Salt "de-mixing"

QuickTime[™] and a decompressor are needed to see this picture.

Leinweber et al 2006

How most of you view water.

Water dissolves ions...

lons 'screen' charged surfaces

screening length λ_D varies from ~1 – 10³ nm

Electric fields: body force on fluid

net force within screening cloud

Electro-osmosis: field drives flow

"Standard Model" for electrokinetics

...what lurks behind all the cartoons I'll show.

(1) Fluid flow: low-Re flow

$$\eta \nabla^2 \vec{u} - \nabla p - e(n_+ - n_-) \nabla \phi = 0$$

 $abla \cdot \vec{u} = 0$

$$\nabla^2 \phi = -\frac{e(n_+ - n_-)}{\epsilon_w}$$

Coupled, Nonlinear PDE's

Common Approach: Matched asymptotics With "thin" double-layers

(3) Ion conservation

$$\vec{j}_{\pm} = -D\nabla n_{\pm} + \vec{u}n_{\pm} \mp \frac{eD}{k_BT}n_{\pm}\nabla\phi$$
diffusion advection electrostatic

Microfabrication: natural surface charge inhomogeneities

Andy Pascall & TMS

Leinweber & Tallarek 2005 QuickTime™ and a decompressor are needed to see this picture. QuickTime[™] and a decompressor are needed to see this picture.

Theory: J. Anderson, Ajdari, Stone, Long, Ghosal, Yariv, TMS, many many others

Electro-osmotic flow: Similarity solution outside double-layer Yariv (2004)

Electro-osmotic flow: Similarity solution outside double-layer Yariv (2004)

Violates ion conservation!

Electro-osmotic flow: Similarity solution outside double-layer Yariv (2004)

Violates ion conservation!

lon conservation:

Field pulled in from bulk
How far downstream (L) before standard "parallel field"?

Violates ion conservation!

Electro-osmotic flow: Similarity solution outside double-layer Yariv (2004)

Ion conservation:

Field pulled in from bulk
How far downstream (L) before standard "parallel field"?

$$J_{\rm in} = J_{\rm out}$$

$$L = rac{\sigma_S}{\sigma_B} \sim \lambda_D e^{e\zeta/k_BT}$$
•Can be very long!

No geometric length scale: "Healing length" emerges

Universal flow problem: scale by healing length

Ion conservation alters electrostatic boundary condition

$$\sigma_B \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial x} \left(\sigma_s(x) \frac{\partial \phi}{\partial x} \right)$$

Question: what happens to the ions...

At first: Seems ok

Question: what happens to the ions...

Electro-osmosis over a periodically-varying charged surface

•Low-ζ: can be solved exactly

- Steady-state concentration and fields
- Oscillatory concentration and fields
- •Suddenly-applied field -- evolution of "concentration polarization"

-High- ζ also amenable to analysis

- Avoids field curvature effects
- Convective transport due to EOF

Concentration polarization suddenly-applied field

Outside DL: Salt transport via diffusion Inhomogeneous double-layer: salt source/sink disribution Natural time scale: $\tau_D \sim \lambda^2/D$

Convection and diffusion of salt

Electro-osmotic Peclet number: $Pe_E = \frac{U_{EOF}L}{D} \sim \frac{\epsilon \zeta E \lambda}{\mu D}$ $\mu \overline{D}$

Convection and diffusion of salt

Electro-osmotic Peclet number: Pe

$$e_E = \frac{U_{EOF}L}{D} \sim \frac{\epsilon \zeta E \lambda}{\mu D}$$

Flow asymmetry gives concentration asymmetry, form salt plumes

Convection-diffusion: salt plumes CP + Convection

Electro-osmotic Peclet number:

$$Pe_E = \frac{U_{EOF}L}{D} \sim \frac{\epsilon \zeta E \lambda}{\mu D}$$

Leinweber & Tallarek 2005

Salt "de-mixing"

QuickTime[™] and a decompressor are needed to see this picture.

Leinweber et al 2006

Yossifon & Chang 2008

2D diffusion from line source/sink: ill-posed.

Regularization mechanisms:

•Convective transport from EOF

- •Convection-diffusion boundary layer, 'upwind' stabilizes
- Downwind: salt gradually reduced

•Plate ends, providing a line source of salt

Time scale to reach steady state: •*diffusion time L*²/D •*convection time L*/U_{EOF}

Where we've since gone

Electrophoresis with slip & sterics

Gating in 'tunable' nanochannels

Universal EK mobility Of highly-charged bodies

Roughness effects

Inhomogeneous surface transport

Surface charge gradients:

- Ion conservation necessitates bulk field perturbations
- At step changes: "healing length" ~ σ_{S} / σ_{B} can be long

- Field into/out of DL creates sources/sinks of salt
- Concentration Polarization
 - Established over 'macro' time and length scales
 - Nontrivially influenced by convection with EOF
- Step Change:
 - ill defined without regularization
 - Trailing edge diffusive dipole
 - Convection with EOF boundary layer

Acknowledgments

The Frenkiel Award Committee & DFD Community Aditya Khair, Andy Pascall, Rob Messinger Carl Meinhart

References

Khair & Squires "Fundamental aspects of concentration polarization arising from non-uniform surface transport", *Phys. Fluids* 20, 087102 (2008)
Khair & Squires, *J. Fluid Mech.* 615, 323-334 (2008)

