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Broader impacts of electrokinetics research
Convective charge separation in low-conductivity fluids

Streaming potential
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Convective charge separation in low-conductivity fluids

QuickTime™ and a
 decompressor

Broader impacts of electrokinetics research

Source: youtube

Potentially highly transformative, in the exothermic sense

My Outreach to you:  please remember to ground your gas containers.

 decompressor
are needed to see this picture.
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A modern renaissance in electrokinetics

Microfabrication:
Fields and flows provide many new ways to 

control micro & nano-scale transport 

DNA translocation Nanofluidic Diode Energy Harvesting

Yossifon & Chang 2008

Overlimiting Currents
in Electrochemical Systems 

Concentration Polarization
at Micro/Nano Interfaces

Leinweber et al 2006

Salt “de-mixing”

Kim et al. 2005

Karnik et al. 2007Keyser et al. 2006 van der Heyden et al. 
2007

QuickTime™ and a
 decompressor

are needed to see this picture.
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How most of you view water.
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Water dissolves ions...
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Ions ‘screen’ charged surfaces

screening length λλλλD varies from ~1 – 103 nm

Potential
Drop
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Electric fields: body force on fluid

net force within screening cloud
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Electro-osmosis:  field drives flow

‘slip’ velocity (conveyor belt)
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“Standard Model” for electrokinetics

(2)  Electrostatics

(1)  Fluid flow:  low-Re flow

Coupled, 

Nonlinear

PDE’s

…what lurks behind all the cartoons I’ll show.

diffusion advection electrostatic

(3)  Ion conservation

(2)  Electrostatics
Common Approach:

Matched asymptotics

With “thin” double-layers
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Stroock et al 00

Microfabrication: natural surface charge inhomogeneities

Green, Gonzales, Ramos … 00

QuickTime™ and a

Karnik et al. 07

Leinweber & Tallarek 2005

Andy Pascall & TMS

Theory: J. Anderson, Ajdari, Stone, Long, Ghosal, Yariv, TMS, many many others  

QuickTime™ and a
 decompressor

are needed to see this picture.

Kim et al. 2005

QuickTime™ and a
 decompressor

are needed to see this picture.

Leinweber & Tallarek 2005
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Surface charge discontinuity

Electro-osmotic flow:
Similarity solution

outside double-layer
Yariv (2004)
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Surface charge discontinuity

Violates ion conservation!

Electro-osmotic flow:
Similarity solution

outside double-layer
Yariv (2004)
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Surface charge discontinuity

Violates ion conservation!

Electro-osmotic flow:
Similarity solution

outside double-layer
Yariv (2004)

Ion conservation:
•Field pulled in from bulk

•How far downstream (L) before 

standard “parallel field”?
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Surface charge discontinuity

Violates ion conservation!

Electro-osmotic flow:
Similarity solution

outside double-layer
Yariv (2004)

No geometric length scale: “Healing length” emerges

•Can be very long!

Ion conservation:
•Field pulled in from bulk

•How far downstream (L) before 

standard “parallel field”?
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Universal flow problem: 
scale by healing length

• Ion conservation alters electrostatic boundary condition

Electric 
Field 

x = σs/σB

Field 

Lines

Flow
Stream 
Lines

Field & flow “heal” over length scale λλλλH=σ=σ=σ=σs/σσσσB
Khair & Squires, JFM 08
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Question:  what happens to the ions…

Electric 

Field 
Lines

At first:

Seems ok
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Question:  what happens to the ions…

Electric 

Field 
Lines

At first:

Seems ok

Reverse field: 
Ion accumulation

Steady state solution?
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Simplest 

model 

system

Inhomogeneous surface transport:
Ion conservation Khair & Squires, PoF (08)

Electro-osmosis over a periodically-varying charged surface 

•Low-ζ:ζ:ζ:ζ: can be solved exactly
•Steady-state concentration and fields
•Oscillatory concentration and fields
•Suddenly-applied field -- evolution of “concentration polarization”

•High-ζ ζ ζ ζ also amenable to analysis
•Avoids field curvature effects 
•Convective transport due to EOF
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Concentration Polarization

E

Loss of (+) ions:

Need inward field
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Concentration Polarization

E

Loss of (+) ions:

Need inward field

Gain of (+) ions:

Need outward field
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Concentration Polarization

E

Loss of (+) ions:

Need inward field

Gain of (+) ions:

Need outward field

Gain of (-) ions:

Need inward field
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Concentration Polarization

E

Loss of (-) ions:

Need outward field

Loss of (+) ions:

Need inward field

Gain of (+) ions:

Need outward field

Gain of (-) ions:

Need inward field

This is a cartoon.  All details emerge quantitatively from analysis
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Concentration polarization
suddenly-applied field

Inhomogeneous double-layer: salt source/sink disribution

Outside DL:  Salt transport via diffusion

Natural time scale:  ττττD∼λ∼λ∼λ∼λ2/D

t = 10-3 ττττD
t = 10-2 ττττD

E

t = ττττD
t =10 ττττD

λλλλ

E
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Convection and diffusion of salt

PeE = 10-3

+
_

E

Electro-osmotic
Peclet number:

+
_
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Convection and diffusion of salt

PeE = 10-3 PeE = 1

+
_

E

Electro-osmotic
Peclet number:

PeE = 10 PeE = 100

Flow asymmetry gives concentration asymmetry, form salt plumes

+
_
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Convection-diffusion:  salt plumes

E

Electro-osmotic
Peclet number:

Leinweber & Tallarek 2005

Salt “de-mixing”

CP + Convection

E
QuickTime™ and a

 decompressor
are needed to see this picture.

Salt “de-mixing”

Leinweber et al 2006

Yossifon & Chang 2008
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Surface charge discontinuities
2D diffusion from line source/sink: ill-posed.

Regularization mechanisms:
•Convective transport from EOF

•Convection-diffusion boundary layer, ‘upwind’ stabilizes
•Downwind: salt gradually reduced

•Plate ends, providing a line source of salt

Time scale to reach steady state:  
•diffusion time L2/D
•convection time L/UEOF
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Where we’ve since gone

Electrophoresis with slip & sterics
Universal EK mobility

Of highly-charged bodies

Surface conduction
determines mobility

Steric ions

Roughness effects

Gating in ‘tunable’ nanochannels

Remarkable 
Collapse!

Partial Slip Khair & Squires, PoF 09, JFM 09

Voltage

C
u

rr
e

n
t

QuickTime™ and a
 decompressor

are needed to see this picture.
QuickTime™ and a

 decompressor
are needed to see this picture.

Squires, preprint
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Inhomogeneous surface transport

• Surface charge gradients:
– Ion conservation necessitates bulk field perturbations

– At step changes:  “healing length” ~ σS /σB can be long

– Field into/out of DL creates sources/sinks of salt– Field into/out of DL creates sources/sinks of salt

– Concentration Polarization
• Established over ‘macro’ time and length scales

• Nontrivially influenced by convection with EOF

– Step Change:
• ill defined without regularization

– Trailing edge - diffusive dipole

– Convection with EOF - boundary layer
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Concentration polarization
Electrokinetic formation of salt concentration gradients
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Permiselective membrane

High Salt

QuickTime™ and a
 decompressor

are needed to see this picture.

Tallarek et al 2005

E +- Salt Sink
+-

+- +- +-+- E Low salt

CP in porous granules

Kim, Han et al 2007

CP across nanochannels

See e.g. Rubinstein

•Induced-charge

electrokinetics

(e.g. Chu & Bazant)
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