Electrokinetic effects

Diffuse ions

fluid flow, particle motion

Electric fields
Electrokinetic effects

Field-driven motion

Electro-osmotic flow

Diffuse ions

fluid flow, particle motion

Electric fields

Paul et al. '99

Copyright Aditya Khair and Todd Squires, 2009
Electrokinetic effects

Field-driven motion

Electro-osmotic flow

qE

Diffuse ions

Fluid flow, particle motion

Electric fields

Electrophoresis

Happy 200th Birthday!

“Notice sur un nouvel effet de l'électricité galvanique”

F.F. Reuss 1809

Copyright Aditya Khair and Todd Squires, 2009
Electrokinetic effects

Field-driven motion

Electro-osmotic flow

qE

Paul et al. ‘99

Flow-driven fields

Streaming potential

Electrophoresis

fluid flow, particle motion

Electric fields

Diffuse ions

“Notice sur un nouvel effet de l'électricité galvanique”

F.F. Reuss 1809

Happy 200th Birthday!

Copyright Aditya Khair and Todd Squires, 2009
Broader impacts of electrokinetics research

Convective charge separation in low-conductivity fluids

Streaming potential
Broader impacts of electrokinetics research

Convective charge separation in low-conductivity fluids

QuickTime™ and a decompressor are needed to see this picture.

Potentially highly transformative, in the exothermic sense

My Outreach to you: please remember to ground your gas containers.

Source: youtube

Copyright Aditya Khair and Todd Squires, 2009
A modern renaissance in electrokinetics

Microfabrication:
Fields and flows provide many new ways to control micro & nano-scale transport

DNA translocation

Nanofluidic Diode

Energy Harvesting

Overlimiting Currents in Electrochemical Systems

Concentration Polarization at Micro/Nano Interfaces

Salt “de-mixing”

Keyser et al. 2006

Karnik et al. 2007

van der Heyden et al. 2007

Yossifon & Chang 2008

Kim et al. 2005

Leinweber et al. 2006

Copyright Aditya Khair and Todd Squires, 2009
How most of you view water.

Water, $\varepsilon = 80$
Water dissolves ions...

\[\text{Water, } \varepsilon = 80 \]

\[\text{OH}^- \quad \text{H}^+ \quad \text{Na}^+ \quad \text{Cl}^- \quad \text{etc.} \]
Ions ‘screen’ charged surfaces

Screening length λ_D varies from $\sim 1 – 10^3$ nm

Copyright Aditya Khair and Todd Squires, 2009
Electric fields: body force on fluid

net force within screening cloud
Electro-osmosis: field drives flow

'\textit{slip'} velocity (conveyor belt) \(u_s = -\frac{\varepsilon\zeta}{\eta} E \)
“Standard Model” for electrokinetics

...what lurks behind all the cartoons I’ll show.

(1) Fluid flow: low-Re flow

$$\eta \nabla^2 \vec{u} - \nabla p - e(n_+ - n_-) \nabla \phi = 0$$

$$\nabla \cdot \vec{u} = 0$$

(2) Electrostatics

$$\nabla^2 \phi = -\frac{e(n_+ - n_-)}{\epsilon_w}$$

(3) Ion conservation

$$\vec{j}_\pm = -D \nabla n_\pm + \vec{u} n_\pm \pm \frac{eD}{k_B T} n_\pm \nabla \phi$$

diffusion
advection
electrostatic
Microfabrication: natural surface charge inhomogeneities

Theory: J. Anderson, Ajdari, Stone, Long, Ghosal, Yariv, TMS, many many others
Surface charge discontinuity

Electro-osmotic flow: Similarity solution outside double-layer
Yariv (2004)
Surface charge discontinuity

Electro-osmotic flow:
Similarity solution outside double-layer
Yariv (2004)

Violates ion conservation!
Surface charge discontinuity

Electro-osmotic flow: Similarity solution outside double-layer
Yariv (2004)

Violates ion conservation!

Ion conservation:
• Field pulled in from bulk
• How far downstream (L) before standard “parallel field”?
Surface charge discontinuity

Electro-osmotic flow:
Similarity solution outside double-layer
Yariv (2004)

Violates ion conservation!

Ion conservation:
- Field pulled in from bulk
- How far downstream (L) before standard “parallel field”?

\[L = \frac{\sigma_S}{\sigma_B} \sim \lambda_D e^{\zeta/k_B T} \]

- Can be very long!

No geometric length scale: “Healing length” emerges

Copyright Aditya Khair and Todd Squires, 2009
Universal flow problem: scale by healing length

- Ion conservation alters electrostatic boundary condition

\[\sigma_B \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial x} \left(\sigma_s(x) \frac{\partial \phi}{\partial x} \right) \]

Electric Field Lines

Flow Stream Lines

Field & flow “heal” over length scale \(\lambda_H = \frac{\sigma_s}{\sigma_B} \)

Khair & Squires, JFM 08
Question: what happens to the ions...

At first:
Seems ok
Question: what happens to the ions...

At first: Seems ok

Reverse field: Ion accumulation

Steady state solution?
Inhomogeneous surface transport: Ion conservation

Khair & Squires, PoF (08)

Simplest model system

Electro-osmosis over a periodically-varying charged surface

- Low-ζ: can be solved exactly
 - Steady-state concentration and fields
 - Oscillatory concentration and fields
 - Suddenly-applied field -- evolution of “concentration polarization”
- High-ζ also amenable to analysis
 - Avoids field curvature effects
 - Convective transport due to EOF
Concentration Polarization

Loss of (+) ions:
Need inward field
Concentration Polarization

Loss of (+) ions: Need inward field
Gain of (+) ions: Need outward field
Concentration Polarization

Loss of (+) ions: Need inward field
Gain of (+) ions: Need outward field
Gain of (-) ions: Need inward field
Concentration Polarization

This is a cartoon. All details emerge quantitatively from analysis.
Concentration polarization
suddenly-applied field

Outside DL: Salt transport via diffusion

Inhomogeneous double-layer: salt source/sink distribution

Natural time scale: \(\tau_D \sim \lambda^2 / D \)

\[t = 10^{-3} \tau_D \]

\[t = 10^{-2} \tau_D \]

\[t = \tau_D \]

\[t = 10 \tau_D \]
Convection and diffusion of salt

Electro-osmotic Peclet number:

\[\text{Pe}_E = \frac{U_{EOF} L}{D} \sim \frac{\epsilon \zeta E \lambda}{\mu D} \]
Convection and diffusion of salt

Electro-osmotic Peclet number:

\[Pe_E = \frac{U_{EOF} L}{D} \sim \frac{\epsilon \zeta E \lambda}{\mu D} \]

Flow asymmetry gives concentration asymmetry, form salt plumes
Convection-diffusion: salt plumes

Electro-osmotic Peclet number:

\[Pe_E = \frac{U_{EOF}L}{D} \sim \frac{\epsilon \zeta E \lambda}{\mu D} \]

QuickTime™ and a decompressor are needed to see this picture.

Salt “de-mixing”

Leinweber & Tallarek 2005
Leinweber et al 2006
Yossifon & Chang 2008
Surface charge discontinuities

2D diffusion from line source/sink: ill-posed.

Regularization mechanisms:

- Convective transport from EOF
 - Convection-diffusion boundary layer, ‘upwind’ stabilizes
 - Downwind: salt gradually reduced
- Plate ends, providing a line source of salt

Time scale to reach steady state:

- Diffusion time L^2/D
- Convection time L/U_{EOF}
Where we’ve since gone

Electrophoresis with slip & steric effects

- Universal EK mobility
- Of highly-charged bodies
- Surface conduction determines mobility
- Remarkable Collapse!

Gating in ‘tunable’ nanoconstrictions

Squires, preprint

Roughness effects

Khair & Squires, PoF 09, JFM 09

Copyright Aditya Khair and Todd Squires, 2009
Inhomogeneous surface transport

- **Surface charge gradients:**
 - Ion conservation necessitates bulk field perturbations
 - At step changes: “healing length” $\sim \sigma_S / \sigma_B$ can be long
 - Field into/out of DL creates sources/sinks of salt
 - Concentration Polarization
 - *Established over ‘macro’ time and length scales*
 - *Nontrivially influenced by convection with EOF*
 - **Step Change:**
 - *ill defined without regularization*
 - Trailing edge - diffusive dipole
 - Convection with EOF - boundary layer
Acknowledgments

The Frenkiel Award Committee & DFD Community
Aditya Khair,
Andy Pascall, Rob Messinger
Carl Meinhart

References

Concentration polarization

Electrokinetic formation of salt concentration gradients

Permeselective membrane

Salt Source

Salt Sink

High Salt

Low salt

CP in porous granules

CP across nanochannels

See e.g. Rubinstein

• Induced-charge electrokinetics (e.g. Chu & Bazant)

Tallarek et al 2005

Kim, Han et al 2007

Copyright Aditya Khair and Todd Squires, 2009