Patterns of Turbulence

Laurette Tuckerman, PMMH-ESPCI-CNRS Dwight Barkley, University of Warwick

Parallel Flows

Transition to turbulence in parallel flows

Copyright Laurete Tuckerman, 200

Re dependence of minimum triggering perturbations and turbulent lifetimes: Mullin, Darbyshire, Peixinho, Hof, Daviaud, Dauchot, Manneville, Eckhardt, Faisst

Basin boundary is fractal/edge states: Eckhardt, Schmiegel, Schneider, Yorke, Skufca

Hof et al., 2004

Copyright Laurette Tuckerman, 2009

New unstable solutions form skeleton of chaotic attractor = turbulence

Nagata, Busse, Ehrenstein, Kawahara, Kida, Waleffe, Cvitanovic, Gibson, Halcrow, Viswanath, Kerswell, Wedin, Pringle, Duguet, Willis, Eckhardt, Faisst

Experiments at CEA/Saclay by Prigent, Dauchot (2000-3)

Spiral Turbulence in counter-rotating Taylor-Couette Flow

Rotor-Stator

Cros & Le Gal (2002)

Plane Poiseuille

Tsukahara et al (2005)

Plane Couette & Taylor-Couette:

- Manneville, Lagha, Rolland
- Duguet, Schlatter, Henningson
- Garcia-Villalba et al.
- Marques, Meseguer, Avila
- Dong

Copyright Laurette Tuckerman, 2009

2000

Moxey & Barkley (2009)

In a LARGE box, turbulence takes varied forms near transition bistable with laminar flow

Computational Domains: Angles and Size

spanwise

1120

Z

classic Minimum Flow Unit for sustaining turbulence

analog of Minimum Flow Unit for turbulent-laminar pattern

Numerical Methods

Direct Numerical Simulations of Navier-Stokes Equations

$$\partial_t \mathbf{u} = -(\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{Re} \Delta \mathbf{u} - \nabla p$$

 $\nabla \cdot \mathbf{u} = 0$

Results

Copyright Laurette Tuckerman, 2009

Branching (θ =24°)

Movie of Localized State

Streamwise velocity in y-z plane

Re=300

 \overline{z}

Copyright Laurette Tuckerman, 2009

Copyright Laurette Tuckerman, 2009

Computational Domains: Angles and Size

Varying angle: Regimes as a function of θ , Re

Probability Distribution Function of $|\widehat{w}_1|$ (modulus of m=1, λ =40 component of spanwise velocity)

Conclusions

* Can reproduce experimental turbulent-laminar pattern in a tilted minimal domain

* Average over x and t yields mean flow U(y,z) which satisfies non-trivial balance between viscous and nonlinear terms in quasi-laminar region (not linear in y) Leads to relation between *Re*, tilt angle θ and wavelength λ

* Most probable value of spatial Fourier coefficient is a good order parameter for the transition to turbulent-laminar patterns.