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History

Periodic orbits are familiar...

Gravitational two-body problem (Newton, 1687)

Three-body problem (Euler, Lagrange, Jacobi)

Gave rise to our appreciation of chaotic orbits (Poincaré)
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New Results

...but still a source of new results!

New orbits found numerically (Moore, 1994)

New orbits existence proven (Chenciner, Montgomery, 2001)
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Lessons

Lessons learned

Some history of science

Students may be invited to consider the difference between
configuration space (R3), and phase space (R6 for two-body
problem and R

9 for three-body problem).

Reduction of dimensionality of phase space when constants of
the motion are known (e.g., COM and relative coordinates)

Students see that this is still a vibrant and active area of
research.
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General Dynamical Systems

Contrast dynamical systems in physics and mathematics

State space M

Evolution rule Φt : M → M

Time t

Continuous time - differential equation - flow
Discrete time - difference equation - map

Physics students will have seen Newton’s equations

Prior course in differential equations

Stretch for them to see relationship to simple maps

Too simple to be useful?
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Bernoulli map

Example: The Bernoulli map

Discrete time dynamical system on the state space [0, 1]

Dynamical equation: xn+1 = 2xn| mod 1

Example periodic orbit: 1
3 ↔ 2

3

Unstable: 0.33 → 0.66 → 0.32 → 0.64 → · · · (Yorke)

Map shifts base-two decimal point to the right

Any rational number is a periodic point

Rational numbers countable and dense in [0, 1]

UPOs can be ordered by period

Irrational numbers give chaotic trajectories
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Bernoulli map

Example: Bernoulli map UPOs

Period Lyndon word Initial condition Observables

Tp Lp x0
PTp−1

j=0 xj

PTp−1
j=0 x2

j

1 0 .0 = 0 0 0
1 .1 = 1 1 1

2 01 .01 = 1/3 1 5/9

3 001 .001 = 1/7 1 3/7
011 .011 = 3/7 2 10/7

4 0001 .0001 = 1/15 1 17/45
0011 .0011 = 1/5 2 6/5
0111 .0111 = 7/15 3 107/45

5 00001 .00001 = 1/31 1 11/31
00101 .00101 = 5/31 2 30/31
00011 .00011 = 3/31 2 34/31
01011 .01011 = 11/31 3 61/31
00111 .00111 = 7/31 3 65/31
01111 .01111 = 15/31 4 104/31
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More lessons

Lessons learned

Very simple dynamical systems can exhibit both periodicity
and chaos

State space is generally replete with UPOs
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Logistic map

Logistic map

State space is again [0, 1]

One-parameter family of maps:

xn+1 = fλ(xn) := 4λxn (1 − xn) .

Pitchfork bifurcation, stable and unstable periodic orbits

Easy programming exercise for students
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Logistic map

Periodic Orbits of Logistic Map

Finding period-two orbits:

Solve: x = fλ(fλ(x))

Minimize: F (x , y) = [x − fλ(y)]
2
+ [y − fλ(x)]

2

Finding period-three orbits, etc:

Solve: x = fλ(fλ(fλ(x)))
Minimize:
F (x , y , z) = [x − fλ(y)]

2
+ [y − fλ(z)]

2
+ [z − fλ(x)]

2
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Logistic map

Cantor Set

Logistic map with λ > 1

Interval leaves state space in one iteration

Preimages of interval leave in two iterations, etc.
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Still more lessons

Lessons Learned

The notions of transient behavior and attracting set

Period doubling route to chaos

Pitchfork bifurcation

UPOs discovered by either root finding or minimization

Cantor-set nature of state space when λ > 1
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Lorenz attractor

Lorenz attractor

Continuous time dynamical system on the state space R
3

Dynamical equations:

ẋ = σ(y − x)
ẏ = −xz + Rx − y

ż = xy − bz
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Attracting set has periodic orbits
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Lorenz attractor

Unstable Periodic Orbits of Lorenz Attractor

Correspond to any binary sequence (e.g., 11110)
Dense in the attractor
System is hyperbolic

S = 50. e
T = 4.41957 e
F = 0.155848 e
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If you know all UPOs with period < T , you can make
statistical predictions of any observable (DZF formalism).
UPOs and their properties can be tabulated, stored, and made
available in a curated database.
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Lorenz attractor

These can be tabulated. . .

Viswanath, Nonlinearity 16 (2003) 1035-1056
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More lessons

Lessons Learned

These observations work for continuous-time dynamical
systems

The same labeling of orbits used in the Bernoulli map works
for the Lorenz attractor

Symbolic dynamics
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Laminar and periodic flow

Stable periodic orbits

Laminar (stationary) flow is a fixed point in function space

von Kármán vortex street is a closed periodic orbit in function
space
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Turbulent flow

Turbulent flow in two dimensions

Reference: N.T. Ouellette, J.P. Gollub, “Curvature Fields, Topology, and the

Dynamics of Spatiotemporal Chaos,” Phys. Rev. Lett. 99 (2007) 194502.

Periodic flow in square domain

Periodic force
F = A sin (2πmx) sin (2πny) ex + A cos (2πmx) cos (2πny) ey

Flow closely follows F for low Re

Turbulent for high Re
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Yet more lessons

Lessons Learned

All this can be made to work for dynamical systems on
infinite-dimensional state-spaces
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Chaos & turbulence

Unstable Periodic Orbits (UPOs)

Attracting sets in a wide variety of dynamical systems are
replete with periodic orbits

If the dynamics are hyperbolic, the UPOs are unstable

The UPOs are dense in the attracting set

The UPOs are countable and have measure zero in the
attracting set

In spite of zero measure, UPOs are exceedingly important, as
averages over the natural measure can be derived from them

“The skeleton of chaos” (Cvitanovic)
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Chaos & turbulence

Attracting sets and turbulent averages

The driven Navier-Stokes equations in the turbulent regime
describe nonlinear dynamics in an infinite-dimensional
(function) space

These dynamics possess an attracting set

The attracting set is finite-dimensional, and its dimension
grows as a power law in Reynolds number (Constantin, Foias,
Manley, Temam, 1985)

Long-time averages over this attracting set impart a “natural
measure” to it

The problem of turbulence is that of extracting averages of
observables over this natural measure
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Shooting method

Computing UPOs I: Shooting Method

Begin on surface of codimension one in function space

Evolve NS equations until return to that surface

Use Newton-Raphson to close the gap

Serial in time

Constructed to obey equations of motion, but not periodic
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Relaxation method

Computing UPOs II: Relaxation Method

Begin with periodic orbit that is smooth

Relax to solution of NS equations using variational principle

∆([f ],T ) =
1

2

T−1
X

t=0

X

r

X

j

˛

˛

˛

˛

fj (r, t + 1) − fj(r, t) −
1

τ

h

f
eq
j

(r, t) − fj (r, t)
i

˛

˛

˛

˛

2

Constructed to be periodic, but not obey equations of motion

Conjugate-gradient algorithm

Higher-order differencing needed

Local spline fitting to orbit needed

Enormous amounts of memory are needed



Introduction Examples Hydrodynamics Computation Current and future work

General HPC tools

Work in Progress I

Plot of DHt,TL

Buhl-Kennel
HMM

Clustering algs.

Statistical error ~ N-1�2

Conjugate gradient

Kennel-Mees

Improved accuracy

Time sequence

Initial guess for UPOs

UPOs

Ζ function

Monodromy matrix

Symbolic dynamics

Orr-Somerfeld equation

Pseudospectra

Dimension of attractor

Turbulent averages
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Work in progress

Work in Progress II

LUPO: Laboratory for unstable periodic orbits

Shell models of turbulence (Tang, Boghosian)

2D Navier-Stokes (Lätt, Smith, Boghosian)

3D Navier-Stokes (Faizendeiro, Coveney, Boghosian)
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Conclusions

Conclusions

UPOs are a unifying concept in dynamical systems

Connects mathematical and physical way of understanding
dynamical systems

Improved understanding of fluid UPOs may lead to new
statistical descriptions of turbulence

HPC is just at the point where this can be done for
infinite-dimensional systems

LUPO will give students a way to experiment with such
systems

Creation of a UPO database will help spread and share
information about UPOs
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