Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum

Bruce M. Boghosian1 Hui Tang1 Aaron Brown1
Spencer Smith2 Luis Fazendeiro3 Peter Coveney3

1Department of Mathematics, Tufts University
2Department of Physics, Tufts University
3Centre for Computational Science, University College London

APS March Meeting, 16 March 2009
Periodic orbits are familiar...

- Gravitational two-body problem (Newton, 1687)
- Three-body problem (Euler, Lagrange, Jacobi)
- Gave rise to our appreciation of chaotic orbits (Poincaré)
...but still a source of new results!

- New orbits found numerically (Moore, 1994)
- New orbits existence proven (Chenciner, Montgomery, 2001)
Lessons learned

- Some history of science
- Students may be invited to consider the difference between configuration space (\mathbb{R}^3), and phase space (\mathbb{R}^6 for two-body problem and \mathbb{R}^9 for three-body problem).
- Reduction of dimensionality of phase space when constants of the motion are known (e.g., COM and relative coordinates)
- Students see that this is still a vibrant and active area of research.
General Dynamical Systems

- Contrast dynamical systems in physics and mathematics
- State space M
- Evolution rule $\Phi_t : M \rightarrow M$
- Time t
 - Continuous time - differential equation - flow
 - Discrete time - difference equation - map
- Physics students will have seen Newton’s equations
- Prior course in differential equations
- Stretch for them to see relationship to simple maps
- Too simple to be useful?
Example: The Bernoulli map

- Discrete time dynamical system on the state space $[0, 1]$
- Dynamical equation: $x_{n+1} = 2x_n \mod 1$
- Example periodic orbit: $\frac{1}{3} \leftrightarrow \frac{2}{3}$
- Unstable: $0.33 \to 0.66 \to 0.32 \to 0.64 \to \cdots$ (Yorke)
- Map shifts base-two decimal point to the right
- Any rational number is a periodic point
- Rational numbers countable and dense in $[0, 1]$
- UPOs can be ordered by period
- Irrational numbers give chaotic trajectories
Example: Bernoulli map UPOs

| Period T_p | Lyndon word L_p | Initial condition x_0 | Observables
$\sum_{j=0}^{T_p-1} x_j$ | $\sum_{j=0}^{T_p-1} x_j^2$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0 = 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 $= 1$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>0.01 $= 1/3$</td>
<td>1</td>
<td>5/9</td>
</tr>
<tr>
<td>3</td>
<td>001</td>
<td>0.001 $= 1/7$</td>
<td>1</td>
<td>3/7</td>
</tr>
<tr>
<td></td>
<td>011</td>
<td>0.011 $= 3/7$</td>
<td>2</td>
<td>10/7</td>
</tr>
<tr>
<td>4</td>
<td>0001</td>
<td>0.0001 $= 1/15$</td>
<td>1</td>
<td>17/45</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>0.0011 $= 1/5$</td>
<td>2</td>
<td>6/5</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>0.0111 $= 7/15$</td>
<td>3</td>
<td>107/45</td>
</tr>
<tr>
<td>5</td>
<td>00001</td>
<td>0.00001 $= 1/31$</td>
<td>1</td>
<td>11/31</td>
</tr>
<tr>
<td></td>
<td>00101</td>
<td>0.00101 $= 5/31$</td>
<td>2</td>
<td>30/31</td>
</tr>
<tr>
<td></td>
<td>00011</td>
<td>0.00011 $= 3/31$</td>
<td>2</td>
<td>34/31</td>
</tr>
<tr>
<td></td>
<td>01011</td>
<td>0.01011 $= 11/31$</td>
<td>3</td>
<td>61/31</td>
</tr>
<tr>
<td></td>
<td>00111</td>
<td>0.00111 $= 7/31$</td>
<td>3</td>
<td>65/31</td>
</tr>
<tr>
<td></td>
<td>01111</td>
<td>0.01111 $= 15/31$</td>
<td>4</td>
<td>104/31</td>
</tr>
</tbody>
</table>
Lessons learned

- Very simple dynamical systems can exhibit both periodicity and chaos
- State space is generally replete with UPOs
State space is again $[0, 1]$

One-parameter family of maps:

$$x_{n+1} = f_\lambda(x_n) := 4\lambda x_n (1 - x_n).$$

Pitchfork bifurcation, stable and unstable periodic orbits

Easy programming exercise for students
Finding period-two orbits:

- Solve: \(x = f_\lambda(f_\lambda(x)) \)
- Minimize: \(F(x, y) = [x - f_\lambda(y)]^2 + [y - f_\lambda(x)]^2 \)

Finding period-three orbits, etc:

- Solve: \(x = f_\lambda(f_\lambda(f_\lambda(x))) \)
- Minimize:
 \[
 F(x, y, z) = [x - f_\lambda(y)]^2 + [y - f_\lambda(z)]^2 + [z - f_\lambda(x)]^2
 \]
Logistic map with $\lambda > 1$

Interval leaves state space in one iteration

Preimages of interval leave in two iterations, etc.
Lessons Learned

- The notions of transient behavior and attracting set
- Period doubling route to chaos
- Pitchfork bifurcation
- UPOs discovered by either root finding or minimization
- Cantor-set nature of state space when $\lambda > 1$
Lorenz attractor

- Continuous time dynamical system on the state space \mathbb{R}^3
- Dynamical equations:

\[
\begin{align*}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= -xz + Rx - y \\
\dot{z} &= xy - bz
\end{align*}
\]

- Attracting set has periodic orbits
Unstable Periodic Orbits of Lorenz Attractor

- Correspond to any binary sequence (e.g., 11110)
- Dense in the attractor
- System is *hyperbolic*

If you know all UPOs with period $< T$, you can make statistical predictions of any observable (DZF formalism).
- UPOs and their properties can be tabulated, stored, and made available in a curated database.
These can be tabulated...

- Tabulated up to ~ 20 symbols
Lessons Learned

- These observations work for continuous-time dynamical systems
- The same labeling of orbits used in the Bernoulli map works for the Lorenz attractor
- Symbolic dynamics
Laminar and periodic flow

Stable periodic orbits

- Laminar (stationary) flow is a fixed point in function space
- von Kármán vortex street is a closed periodic orbit in function space
Turbulent flow in two dimensions

- Periodic flow in square domain
- Periodic force
 \[\mathbf{F} = A \sin(2\pi mx) \sin(2\pi ny) \mathbf{e}_x + A \cos(2\pi mx) \cos(2\pi ny) \mathbf{e}_y \]
- Flow closely follows \(\mathbf{F} \) for low Re
- Turbulent for high Re
Lessons Learned

- All this can be made to work for dynamical systems on infinite-dimensional state-spaces
Unstable Periodic Orbits (UPOs)

- Attracting sets in a wide variety of dynamical systems are replete with periodic orbits
- If the dynamics are hyperbolic, the UPOs are unstable
- The UPOs are dense in the attracting set
- The UPOs are countable and have measure zero in the attracting set
- In spite of zero measure, UPOs are exceedingly important, as averages over the natural measure can be derived from them
- “The skeleton of chaos” (Cvitanovic)
Attracting sets and turbulent averages

- The driven Navier-Stokes equations in the turbulent regime describe nonlinear dynamics in an infinite-dimensional (function) space.
- These dynamics possess an attracting set.
- The attracting set is finite-dimensional, and its dimension grows as a power law in Reynolds number (Constantin, Foias, Manley, Temam, 1985).
- Long-time averages over this attracting set impart a “natural measure” to it.
- The problem of turbulence is that of extracting averages of observables over this natural measure.
Computing UPOs I: Shooting Method

- Begin on surface of codimension one in function space
- Evolve NS equations until return to that surface
- Use Newton-Raphson to close the gap
- Serial in time
- Constructed to obey equations of motion, but not periodic
Computing UPOs II: Relaxation Method

- Begin with periodic orbit that is smooth
- Relax to solution of NS equations using variational principle

\[\Delta([f], T) = \frac{1}{2} \sum_{t=0}^{T-1} \sum_r \sum_j \left| f_j(r, t + 1) - f_j(r, t) - \frac{1}{\tau} \left[f_{eq}^j(r, t) - f_j(r, t) \right] \right|^2 \]

- Constructed to be periodic, but not obey equations of motion
- Conjugate-gradient algorithm
- Higher-order differencing needed
- Local spline fitting to orbit needed
- *Enormous* amounts of memory are needed
Work in Progress I

- General HPC tools
- Clustering alg.
 - HMM
 - Buhl–Kennel
- Initial guess for UPOs
- Time sequence
- Plot of $\Delta(t,T)$
- Conjugate gradient
- Symbolic dynamics
- Kennel–Mees
- UPOs
- Improved accuracy
- Monodromy matrix
- Statistical error $\sim N^{-1/2}$
- Orr–Sommerfeld equation
- Pseudospectra
- Dimension of attractor
- Turbulent averages
- Improved accuracy
- ζ function
- Hydrodynamics
- Computation
- Current and future work
Work in Progress II

- LUPO: Laboratory for unstable periodic orbits
- Shell models of turbulence (Tang, Boghosian)
- 2D Navier-Stokes (Lätt, Smith, Boghosian)
- 3D Navier-Stokes (Faizendeiro, Coveney, Boghosian)
Conclusions

- UPOs are a unifying concept in dynamical systems
- Connects mathematical and physical way of understanding dynamical systems
- Improved understanding of fluid UPOs may lead to new statistical descriptions of turbulence
- HPC is just at the point where this can be done for infinite-dimensional systems
- LUPO will give students a way to experiment with such systems
- Creation of a UPO database will help spread and share information about UPOs