Introduction Examples Hydrodynamics Computation Ourrent and future work

Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum

Bruce M. Boghosian¹ Hui Tang¹ Aaron Brown¹ Spencer Smith² Luis Fazendeiro³ Peter Coveney³

¹Department of Mathematics, Tufts University ²Department of Physics, Tufts University ³Centre for Computational Science, University College London

APS March Meeting, 16 March 2009

Introduction	Examples	Hydrodynamics	Computation	Current and future work

Outline

Introduction

2 Examples

- Bernoulli map
- Logistic map
- Lorenz attractor

3 Hydrodynamics

- Laminar and periodic flow
- Turbulent flow
- Chaos & turbulence

4 Computation

- **5** Current and future work
 - General HPC tools
 - Work in progress
 - Conclusions

Periodic orbits are familiar					
History					
Introduction ●○○	Examples 00000000000	Hydrodynamics 00000	Computation 00	Current and future work	

- Gravitational two-body problem (Newton, 1687)
- Three-body problem (Euler, Lagrange, Jacobi)

• Gave rise to our appreciation of chaotic orbits (Poincaré)

but still a source of new results!					
New Results					
	Examples 00000000000	Hydrodynamics 00000	Computation 00	Current and future wor	
Introduction	Examples	Hydrodynamics	Computation	Current and future w	ork

- New orbits found numerically (Moore, 1994)
- New orbits existence proven (Chenciner, Montgomery, 2001)

Introduction	Examples 0000000000	Hydrodynamics 00000	Computation 00	Current and future work
Lessons				
Lessons learn	ed			

- Some history of science
- Students may be invited to consider the difference between configuration space (ℝ³), and phase space (ℝ⁶ for two-body problem and ℝ⁹ for three-body problem).
- Reduction of dimensionality of phase space when constants of the motion are known (e.g., COM and relative coordinates)
- Students see that this is still a vibrant and active area of research.

Introduction	Examples	Hydrodynamics	Computation	Current and future work

General Dynamical Systems

- Contrast dynamical systems in physics and mathematics
- State space M
- Evolution rule $\Phi_t : M \to M$
- Time t
 - Continuous time differential equation flow
 - Discrete time difference equation map
- Physics students will have seen Newton's equations
- Prior course in differential equations
- Stretch for them to see relationship to simple maps
- Too simple to be useful?

Example: ⁻	The Bernoulli	map		
Bernoulli map				
000	● 0 000000000	00000	00	000
Introduction	Examples	Hydrodynamics	Computation	Current and future work

- Discrete time dynamical system on the state space [0,1]
- Dynamical equation: $x_{n+1} = 2x_n |_{mod 1}$
- Example periodic orbit: $\frac{1}{3} \leftrightarrow \frac{2}{3}$
- Unstable: $0.33 \rightarrow 0.66 \rightarrow 0.32 \rightarrow 0.64 \rightarrow \cdots$ (Yorke)
- Map shifts base-two decimal point to the right
- Any rational number is a periodic point
- Rational numbers countable and dense in [0,1]
- UPOs can be ordered by period
- Irrational numbers give chaotic trajectories

Introduction	Examples	Hydrodynamics	Computation	Current and future work
	0000000000			
Bernoulli map				

Example: Bernoulli map UPOs

Period	Lyndon word	Initial condition	Obser	vables
T_p	Lp	<i>x</i> ₀	$\sum_{j=0}^{T_p-1} x_j$	$\sum_{j=0}^{T_p-1} x_j^2$
1	0	$\overline{0} = 0$.	0	0
	1	$.\overline{1} = 1$	1	1
2	01	$.\overline{01} = 1/3$	1	5/9
3	001	$.\overline{001} = 1/7$	1	3/7
	011	$.\overline{011} = 3/7$	2	10/7
4	0001	$.\overline{0001} = 1/15$	1	17/45
	0011	$.\overline{0011} = 1/5$	2	6/5
	0111	$.\overline{0111} = 7/15$	3	107/45
5	00001	$.\overline{00001} = 1/31$	1	11/31
	00101	$.\overline{00101} = 5/31$	2	30/31
	00011	$.\overline{00011} = 3/31$	2	34/31
	01011	$.\overline{01011} = 11/31$	3	61/31
	00111	$.\overline{00111} = 7/31$	3	65/31
	01111	$.\overline{01111} = 15/31$	4	104/31

Introduction	Examples	Hydrodynamics	Computation	Current and future work
	0000000000			
More lessons				
Lessons learned				

- Very simple dynamical systems can exhibit both periodicity and chaos
- State space is generally replete with UPOs

Logistic map				
Logistic map				
Introduction 000	Examples ○○○●○○○○○○	Hydrodynamics 00000	Computation 00	Current and future work

- State space is again [0,1]
- One-parameter family of maps:

$$x_{n+1} = f_{\lambda}(x_n) := 4\lambda x_n (1-x_n).$$

- Pitchfork bifurcation, stable and unstable periodic orbits
- Easy programming exercise for students

Periodic Orbits of Logistic Map					
Logistic map					
Introduction 000	Examples	Hydrodynamics 00000	Computation 00	Current and future work	

• Finding period-two orbits:

- Solve: $x = f_{\lambda}(f_{\lambda}(x))$
- Minimize: $F(x, y) = [x f_{\lambda}(y)]^{2} + [y f_{\lambda}(x)]^{2}$

• Finding period-three orbits, etc:

- Solve: $x = f_{\lambda}(f_{\lambda}(f_{\lambda}(x)))$
- Minimize:

$$F(x, y, z) = [x - f_{\lambda}(y)]^{2} + [y - f_{\lambda}(z)]^{2} + [z - f_{\lambda}(x)]^{2}$$

Introduction	Examples	Hydrodynamics	Computation	Current and future work
000	00000000000	00000	00	000
Logistic map				
Cantor Set				

- Logistic map with $\lambda > 1$
- Interval leaves state space in one iteration
- Preimages of interval leave in two iterations, etc.

Introduction	Examples	Hydrodynamics	Computation	Current and future work
	00000000000			
Still more lessons				
Lessons Learned				

- The notions of transient behavior and attracting set
- Period doubling route to chaos
- Pitchfork bifurcation
- UPOs discovered by either root finding or minimization
- $\bullet\,$ Cantor-set nature of state space when $\lambda>1$

Introduction 000	Examples ○○○○○○●○○○	Hydrodynamics 00000	Computation 00	Current and future work
Lorenz attractor				
Lorenz attractor				

- $\bullet\,$ Continuous time dynamical system on the state space \mathbb{R}^3
- Dynamical equations:

• Attracting set has periodic orbits

Introduction	Examples	Hydrodynamics	Computation	Current and future work
	000000000000000000000000000000000000000			
Lorenz attractor				

Unstable Periodic Orbits of Lorenz Attractor

- Correspond to any binary sequence (e.g., 11110)
- Dense in the attractor
- System is hyperbolic

- If you know all UPOs with period < T, you can make statistical predictions of any observable (DZF formalism).
- UPOs and their properties can be tabulated, stored, and made available in a curated database.

These can be tabulated				
Lorenz attractor				
000	examples ○○○○○○○○○●○	00000	Computation	OOO
	Economica		Communities	Communication of Communication

• Viswanath, Nonlinearity 16 (2003) 1035-1056

 $\bullet\,$ Tabulated up to ~ 20 symbols

Introduction 000	Examples ○○○○○○○○○	Hydrodynamics 00000	Computation 00	Current and future work
More lessons				
Lessons Learn	ned			

- These observations work for continuous-time dynamical systems
- The same labeling of orbits used in the Bernoulli map works for the Lorenz attractor
- Symbolic dynamics

Introduction 000	Examples 0000000000	Hydrodynamics ●○○○○	Computation 00	Current and future work	
Laminar and periodic flow					
Stable periodic orbits					

- Laminar (stationary) flow is a fixed point in function space
- von Kármán vortex street is a closed periodic orbit in function space

Turbulent flow in two dimensions				
Turbulent flow				
Introduction 000	Examples 00000000000	Hydrodynamics	Computation 00	Current and future work

- Reference: N.T. Ouellette, J.P. Gollub, "Curvature Fields, Topology, and the Dynamics of Spatiotemporal Chaos," *Phys. Rev. Lett.* **99** (2007) 194502.
- Periodic flow in square domain
- Periodic force

 $\mathbf{F} = A \sin(2\pi mx) \sin(2\pi ny) \mathbf{e}_x + A \cos(2\pi mx) \cos(2\pi ny) \mathbf{e}_y$

- Flow closely follows **F** for low Re
- Turbulent for high Re

Introduction	Examples	Hydrodynamics	Computation	Current and future work
		00000		
Yet more lessons				
Lessons Learn	ned			

• All this can be made to work for dynamical systems on infinite-dimensional state-spaces

Introduction	Examples 00000000000	Hydrodynamics	Computation 00	Current and future work	
Chaos & turbulence					
Unstable Periodic Orbits (UPOs)					

- Attracting sets in a wide variety of dynamical systems are replete with periodic orbits
- If the dynamics are hyperbolic, the UPOs are unstable
- The UPOs are dense in the attracting set
- The UPOs are countable and have measure zero in the attracting set
- In spite of zero measure, UPOs are exceedingly important, as averages over the natural measure can be derived from them
- "The skeleton of chaos" (Cvitanovic)

Attracting sets and turbulent averages				
Chaos & turbulence				
Introduction 000	Examples 00000000000	Hydrodynamics ○○○○●	Computation 00	Current and future work

- The driven Navier-Stokes equations in the turbulent regime describe nonlinear dynamics in an infinite-dimensional (function) space
- These dynamics possess an attracting set
- The attracting set is finite-dimensional, and its dimension grows as a power law in Reynolds number (Constantin, Foias, Manley, Temam, 1985)
- Long-time averages over this attracting set impart a "natural measure" to it
- The problem of turbulence is that of extracting averages of observables over this natural measure

Introduction	Examples	Hydrodynamics	Computation	Current and future work
			0	
Shooting method				
· · · ·				

- Computing UPOs I: Shooting Method
 - Begin on surface of codimension one in function space
 - Evolve NS equations until return to that surface
 - Use Newton-Raphson to close the gap
 - Serial in time
 - Constructed to obey equations of motion, but not periodic

Introduction	Examples	Hydrodynamics	Computation	Current and future work
			00	
Relaxation method				

Computing UPOs II: Relaxation Method

- Begin with periodic orbit that is smooth
- Relax to solution of NS equations using variational principle

$$\Delta([f], T) = \frac{1}{2} \sum_{t=0}^{T-1} \sum_{\mathbf{r}} \sum_{j} \left| f_j(\mathbf{r}, t+1) - f_j(\mathbf{r}, t) - \frac{1}{\tau} \left[f_j^{eq}(\mathbf{r}, t) - f_j(\mathbf{r}, t) \right] \right|^2$$

- Constructed to be periodic, but not obey equations of motion
- Conjugate-gradient algorithm
- Higher-order differencing needed
- Local spline fitting to orbit needed
- Enormous amounts of memory are needed

Introduction 000	Examples 00000000000	Hydrodynamics 00000	Computation 00	Current and future work ●○○			
General HPC tools							
Work in Progress I							

Introduction	Examples	Hydrodynamics	Computation	Current and future work			
000	00000000000	00000	00	000			
Work in progress							
Work in Progress II							

- LUPO: Laboratory for unstable periodic orbits
- Shell models of turbulence (Tang, Boghosian)
- 2D Navier-Stokes (Lätt, Smith, Boghosian)
- 3D Navier-Stokes (Faizendeiro, Coveney, Boghosian)

Introduction 000	Examples 00000000000	Hydrodynamics 00000	Computation 00	Current and future work ○○●
Conclusions				
Conclusions				

- UPOs are a unifying concept in dynamical systems
- Connects mathematical and physical way of understanding dynamical systems
- Improved understanding of fluid UPOs may lead to new statistical descriptions of turbulence
- HPC is just at the point where this can be done for infinite-dimensional systems
- LUPO will give students a way to experiment with such systems
- Creation of a UPO database will help spread and share information about UPOs