Doubling the number of physics majors who teach

Michael Marder Chair, APS Committee on Education, 2006-2008 Co-Director of UTeach Professor of Physics, UT Austin

3/15/2009 APS

Doubling

Physics over Time

3/15/2009 APS

Doubling

Grad school ratios

3/15/2009 APS

Doubling

College of Science

- Proposed Elimination of B.S. and B.A. Degrees in Physics
- As part of the Academic Program Prioritization Process, the university has issued a preliminary recommendation to discontinue the Bachelor of Science and Bachelor of Arts degree programs in physics.

Diversity

3/15/2009 APS

US Demographics

- 🖬 White
- 📕 African American

Doubling

- 🖬 Hispanic
- 🖬 Asian

US Physics Faculty, Top Universities

Texas Demographics

Demographics of Physics Faculty, Top Texas Universities

Physics Bachelors Degrees as a Fraction of Total Bachelors Degrees Granted

Physics Graduates vs Hours of Physics Classes Available

Number of Hours of Physics Classes Available

3/15/2009 APS

Doubling

Physics Graduates vs. Hours Required in Math and Science

Physics Graduates vs Lower Division Classes Required

3/15/2009 APS

Doubling

Physics Graduates vs Hours of Physics Classes Available

Number of Hours of Physics Classes Available

Doubling

Physics Graduates vs. Minimum Required Hours

Average Upper Division Hours Required

3/15/2009 APS

Doubling

APS Doubling Initiative

•Unifying Theme: Double the number of bachelor degrees in physics to address critical national needs including K-12 education, economic competitiveness, energy, security, and an informed electorate

•Special Objectives:

>Increase the number of highly-qualified high school physics teachers

>Increase the fraction of both women and under-represented minorities who major in physics

Three critical areas of action (in ranked priority order):

>Preparation of high school teacher physics teachers

»Under-representation of minorities and women in physics

>The undergraduate physics major

Teacher Shortage

[T]he country must ... adopt measures that increase the supply of high-quality teachers — especially in math and science — while cutting down on the distressingly large number of teachers who bail out of the profession early.

Public colleges and universities, which rely heavily on tax dollars, are a good place to start. The government should require them to turn out more high quality teachers of all kinds, especially math and science teachers. Ideally, the enrollments at these colleges of education should be based not on whim, but on projected need. The states should find ways to reward colleges that turn out excellent graduates, while shutting down diploma mills. The states and localities should also develop comprehensive plans not just for hiring, but for mentoring and retaining teachers as well.

NY Times Editorial, August 29, 2007

"SEC. 205. ACCOUNTABILITY FOR PROGRAMS THAT PREPARE TEACHERS.

"(a) INSTITUTIONAL AND PROGRAM REPORT CARDS ON THE QUALITY OF TEACHER PREPARATION.—

"(1) REPORT CARD.—Each institution of higher education that conducts a traditional teacher preparation program or alternative routes to State certification or licensure program and that enrolls students receiving Federal assistance under this Act shall report annually to the State and the general public, in a uniform and comprehensible manner that conforms with the definitions and methods established by the Secretary, the following: "(H) For the State as a whole, and for each teacher preparation program in the State, the number of teachers prepared, in the aggregate and reported separately by—

"(i) area of certification or licensure;

"(ii) academic major; and

 $\ensuremath{``(iii)}\xspace$ subject area for which the teacher has been prepared to teach.

"(I) A description of the extent to which teacher preparation programs are addressing shortages of highly qualified teachers, by area of certification or licensure, subject, and specialty, in the State's public schools.

"SEC. 206. TEACHER DEVELOPMENT.

"(a) ANNUAL GOALS.—Each institution of higher education that conducts a traditional teacher preparation program (including programs that offer any ongoing professional development programs) or alternative routes to State certification or licensure program, and that enrolls students receiving Federal assistance under this Act, shall set annual quantifiable goals for increasing the number of prospective teachers trained in teacher shortage areas designated by the Secretary or by the State educational agency, including mathematics, science, special education, and instruction of limited English proficient students.

Teacher Shortage

	US	Texas
Total schools with grades 9-12	15,400	1846
Total individuals teaching physics	20,000	1852
Teachers out of field	~5000	524
Students per secondary grade	3,000,000	300000
Teachers required to teach 1		
physics to each student	28,000	2,800
Shortage	~13,000	~1500
New physics teachers/year	~1000	?
Physics majors entering teaching	~300	25?

		Chemistr		
	Physics	у	Biology	Math
Total individuals teaching	1852	3657	4967	10262
Number individuals out of field	524	1069	1588	1539
Teachers required to teach one of each science and				
4 math courses to each high school student, with 20				
students per class.	2889	2889	2889	12165
Shortage	1561	301	None	3442

Doubling

Targets for Doubling

				Actual/			
	Actual		Target Ta	rget			
			Physics		Physics		
Institution	Physics	STEM	Majors		Teachers		
California Institute of Technology	45	217	5	900%	0		
Hastings College	7	48	1	700%	0		
Reed College	14	100	2	700%	0		
Coe College	7	64	1	700%	0		
Harvey Mudd College	24	159	4	600%	0		
Hampden-Sydney College	10	74	2	500%	0		
Augsburg College	10	109	2	500%	0		
Roanoke College	5	72	1	500%	0		
Grinnell College	14	137	3	467%	0		
Whittier College	4	59	1	400%	0		
Georgetown College	4	68	1	400%	0		
Knox College	8	108	2	400%	0		
Lycoming College	4	68	1	400%	0		
Ouachita Baptist University	4	62	1	400%	0		
University of Dallas	4	62	1	400%	0		
New Mexico Institute of Mining and Technology	15	174	4	375%	0		
Morehouse College	15	161	4	375%	0		
Hamline University	7	102	2	350%	0		
Bates College	13	182	4	325%	0		
Occidental College	13	164	4	325%	0		
Massachusetts Institute of Technology	80	964	26	308%	3		
Austin College	6	90	2	300%	0		
Kalamazoo College	6	101	2	300%	0		
Lebanon Valley College	6	110	2	300%	0		
Westminster College (New Wilmingtn, PA)	3	62	1	300%	0		
Wheaton College (Norton, MA)	6	86	2	300%	0		
Houghton College	3	65	1	300%	0		

3/15/2009 APS

Doubling

Targets for Doubling

			Ac	Actual/		
	Actual		Target Ta	rget		
			Physics		Physics	
Institution	Physics	STEM	Majors		Teachers	
New York University	12	1063	28	43%	3	
University of PR Rio Piedras Campus	6	516	14	43%	1	
East Stroudsburg University of Pennsylvania	3	278	7	43%	0	
Pennsylvania State U at Erie-Behrend College	3	265	7	43%	0	
St Cloud State University	6	547	14	43%	1	
University of Redlands	3	285	7	43%	0	
Lafayette College	3	292	7	43%	0	
University of California-Riverside	14	1242	33	42%	4	
Boston University	14	1265	34	41%	4	
University of Texas at Austin	39	3499	95	41%	11	
Ball State University	9	842	22	41%	2	
SUNY College at Brockport	4	383	10	40%	1	
University of Maryland Baltimore County	10	939	25	40%	3	
Cedarville College	2	185	5	40%	0	
Jackson State University	2	217	5	40%	0	
Grambling State University	2	207	5	40%	0	
Elon College	2	206	5	40%	0	
University of South Dakota	2	209	5	40%	0	
Loyola College	2	189	5	40%	0	
Pittsburg State University	4	393	10	40%	1	
University of Central Arkansas	4	381	10	40%	1	
Armstrong Atlantic State University	4	394	10	40%	1	
University of Minnesota - Twin Cities	28	2622	71	39%	8	
Michigan State University	28	2637	71	39%	8	
University of Oklahoma, Norman Campus	13	1235	33	39%	4	

Doubling

UTeach

3/15/2009 APS

Doubling

Hallmarks of UTeach

- Collaboration between Colleges of Sciences, Education, and Liberal Arts
- Active recruitment of science and mathematics majors to take the two initial onehour UTeach courses free of charge
- Early and intensive field experiences throughout the program
- Compact degree plans that allow most students to graduate with a degree and certification in four years
- A focus on developing deep-level understanding of the **subject material** and incorporating effective approaches using technology in teaching
- Guidance and inspiration provided by faculty and highly experienced public school teachers who serve as Master Teachers in the program
- Courses taught by **faculty** who are actively engaged in research in mathematics and science and in the teaching and learning of mathematics and science
- Integrated **professional development courses** that all focus on teaching both mathematics and science, and are based on recent research in science and mathematics teaching and learning
- An array of **student benefits**, including paid internships that offer opportunities for community outreach in education
- All essential program elements on **permanent budget** or endowment.

UTeach Enrollment

Math and Science Teachers

graduating from UT Austin

3/15/2009 APS

3/15/2009 APS

Doubling

UTeach Retention

UTeach Course Sequence

3/15/2009 APS

Doubling

3/15/2009 APS

Doubling

3/15/2009 APS

Doubling

UTeach: 8-12 Composite Science

MAJOR REQUIREMENTS: All major requirements must be taken on a letter-grade basis. A GPA of at least 2.0 in these physics					
courses is required.					
LOWER-DIVISION PHY	<u>YSICS:</u>				
PHY 301 + 101L	PHY 31	6 + 116L PHY 3	15 + 115L	PHY 319	
UPPER-DIVISION PHYS	<u>SICS:</u>				
15 semester hours of uppe	er-division Pl	nysics courses consist	ting of:		
PHY 341 Topic: Research Methods-W PHY 353		Junior Lab:: Introduction to Quantum Phenomena			
Three of the following:					
PHY 333 Modern Optics]	PHY 352K Classical I	Electrodynamics	PHY 373 Quantum Mechanics	
PHY 338K Electronic tec	chniques	PHY/SCI 360 Topic:	Physics by Inquiry	PHY 329 Computational Physics	
				PHY 336K Classical Dynamics I	
COMPOSITE SCIENCE CERTIFICATION REQUIREMENTS: Courses intended for non-science majors may not be counted toward this requirement.					
6 semester hours in Biology courses including: BIO 311C + BIO 311D					
6 somester hours in Caelogical Sciences:					
o seniester nours in Geore	ogical belefice				
6 semester hours in Chemistry:					
CH 301 CH 302					
field composite science.					
			DC 365E	Project Based Instruction	
TS 101- Step 1 &	: UTS 110 Step	o 2	200002		
DC 365C Know	ing & Learnir	ng in Math & Science	DC 650S Secondar	Apprentice Teaching in y Schools	
DC 365D Classro	oom Interacti	ons	TS 170	Apprentice Teaching Seminar	
3/15/2009 A	NPS	Doub	ling	Copyright 2009, Michae	

el Marder

UTeachEngineering

UTeachEngineering

Preparing Secondary School Teachers to Deliver Design-Based Engineering Courses

3/15/2009 APS

Doubling

UTeachEngineering

Need for Engineering: Texas allows Engineering as 4th year science class under 4x4 plan [and is considering making physics optional]

4 pathways to engineering certification:

- a) Summer institutes for inservice teachers
- b) Summer Master's program for inservice teachers
- c) Undergraduate certification
- d) Post-baccalaureate certification

4 new courses developed:

- a) Knowing and Learning in Engineering
- b) Principles of Engineering Design
- c) Engineering Energy Systems
- d) Design of Machines and Systems

Aim to certify an additional 20 UTeach students per year with engineering certification, perhaps 10 of them physics majors.

Doubling the number of physics majors who teach

Either we respond to the national calls to greatly increase the numbers of physics majors who become teachers

Or

Our universities may be penalized for failing to produce teachers in critical areas, undergraduate physics programs may be closed, states may back off on requirements that students learn physics, and the U.S. physics community may suffer irreparable damage.