From the Meissner Effect to the Isotope Effect: Precursors to the Microscopic Theory of Superconductivity

Brian Schwartz
The Graduate Center of Cuny

A Century of Superconductivity

- 1- 1908-1930, Discovery of Superconductivity
- 2- 1930-1955, Meissner Effect, Experimental Data, Isotope Effect and Phenomenological Theories
- 3-1955-1960, BCS Theory, Energy Gap, Theoretical Formulations and Experimental Confirmations
- 4- 1960-1985, Tunneling, AC-DC Josephson Effect, Flux Quantization, SQUIDs, High Magnetic Field Superconductors, Magnetic Impurities, Gapless, Heavy ion, Devices, Applications
- 5- 1985- High T_C Materials, Exotic Materials

Outline of Talk

- Review Meissner Effect
- Short Bio on Meissner
- Macroscopic Theories of Superconductivity
- Experimental Results on Superconductors
- Why Superconductivity Was Hard to Solve
- Failed Theories Prior to BCS
- Considerable Physics Post-BCS

Recent References Used

A Focus on Discoveries

Rudolf P.Huebener and Heinz Luebbig World Scientific, Singapore, 2008 History of the Physikalisch-Technische Bundesanstalt and Physikalisch-Technische Reichsanstalt

BSC: 50 Years

Edited by Leon N. Cooper and Dmitri Feldman World Scientific, Singapore, 2011

Various Articles on BCS by Lillian Hoddeson, et al.

Career and Bio of Walther Meissner

- Born in Berlin 1978
- 1901-06 First studied mechanical engineering and then physics and mathematics at the Technische Hochschule
- 1907 Doctoral supervisor <u>Max Planck</u>
 Ph.D. Thesis topic "On the Theory of Radiation Pressure"
- 1908-13 Pyrometry ay the Physikalisch Technische Bundesanstalt in Berlin
- 1913-22 Worked in the Electric Research Laboratory and after WW1 conducted electrical measurements and developed facility to liquefy hydrogen
- 1922-25, He established the world's third largest heliumliquefier (others in Leiden and Toronto)

Career and Bio of Walther Meissner

1927-30 Resistance measurements on non-superconducting metals and known superconductors Pb, Sn, Hg, Tl and In
1928-30 Discovered superconductivity in Tantalum, Thorium, Titanium and Niobium and the first compound Copper Sulfide
1931 studied S-S junctions, Sn-Sn, Pb-Pb, Sn-Pb

•1932-33 discovered perfect diamagnetism in superconductors, Meissner-Ochsenfeld effect Experiments encouraged by Max von Laue

Walter Meissner

Robert Ochsenfeld

He Liqiuefaction Plant

Sketch of Magnetic Field Calculation

Naturwissenschaften Volume 21, Number 44, 787-788, W. Meissner and R. Ochsenfeld

Ein neuer Effekt bei Eintritt der Supraleitfähigkeit

A new Effect upon the Entry of Superconductivity

Albert Einstein (1879-1955)

Niels Bohr (1885-1962)

Ralph Kronig (1905-1995)

Lev D. Landau (1908-1968)

Felix Bloch (1905-1983)

Léon Brillouin (1889 -1969)

Physicists Who Proposed Theories of Superconductivity
Prior to Meissner-Ochsenfeld Experiment
From *Failed Theories of Superconductivity*, Jörg Schmalian

Reproduction of a slide made in 1955 by John Bardeen to illustrate the status of the theory at that time

QUANTUM THEORY

Summerfeld-Bloch **Normal Metals**

Electron-Vibration Interaction (Isotope Effect)

Coulomb Interactions (Heisenberg-Koppe)

 $? \downarrow ?$

ENERGY GAP MODEL

Pippard Theory

London Theory

ELECTROMAGNETIC PROPERTIES

E=0, **B**=0

Two Fluid Model (Gorter-Casimir, etc.)

THERMAL PROPERTIES (Specific Heat, Thermal Conductivity, etc.)

Macroscopic Theories of Superconductivity

- 1. Gorter-Casimir Two Fluid Model
- 2. London Equations, Penetration Depth and Stiffness of the Wavefunction
- 3. Pippard non-local Theory of the Penetration Depth and Introduction of a Coherence Length
- 4. Ginzburg-Landau Phenomenological Theory

Resistance and Specific heat

COR GORTER

HENDRIK CASIMIR

The Two-Fluid Model

In 1934 Gorter and Casimir developed the two-fluid model from the thermodynamic properties of superconductors. A finite fraction of the electrons are condensed into a superfluid. At zero temperature the fraction is 1. As the temperature increases, the fraction of the electrons in the superfluid decreases. At $T_{\rm C}$ the fraction of superfluid electrons goes to zero. The system experiences a second-order phase transition. From the specific heat behavior Gorter and Casimir developed a formula relating the number of electrons in the superfluid to temperature

$$\psi_s^2$$
 (T) = $n_s = n \left[1 - (\frac{T}{T_c})^4 \right]$

Where $n_s(T)$ is the fraction of electrons in the superfluid at temperature T and $\psi_s^2(T)$ will later be related to the superconducting order parameter.

Heitz and Fritz London

London Equations

Perfect diamagnetism implies that not only is the time derivative of B= 0 but B itself equals zero

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \frac{\partial \mathbf{j}_s}{\partial t} = \frac{n_s e^2}{m} \mathbf{E}, \qquad \nabla \times \mathbf{j}_s = -\frac{n_s e^2}{mc} \mathbf{B}.$$

$$\nabla \times \mathbf{B} = \frac{4\pi \mathbf{j}}{c} \qquad \nabla^2 \mathbf{B} = \frac{1}{\lambda^2} \mathbf{B}, \qquad \lambda \equiv \sqrt{\frac{mc^2}{4\pi n_s e^2}}.$$

London realized that in a bulk superconductor with a hole in it, the flux would be trapped

$$\mathbf{j}_s = -\frac{n_s e_s^2}{mc} \mathbf{A}, \qquad \mathbf{v} = \frac{1}{m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right).$$

SIR BRIAN PIPPARD

Pippard Non-Local λ

 $\lambda_{L} = (mc^{2}/4\pi ne^{2})^{1/2} \sim 500\text{Å}$

 λ_{exp} was measured to be longer

By analogy with the anomalous skin effect in metals when $\omega^{-1} \sim \delta < I$

Pippard had to introduce a coherence length $\xi_{\rm O} \sim 10^{-4} \, {\rm cm}$

 ξ_{O} was interpreted as the distance over which the superconducting state was correlated

V. L. Ginzburg

Lev Landau

Ginzburg-Landau Equations

Obtained from a minimization of the free energy expresses in terms of a order parameter

$$\alpha \psi + \beta |\psi|^2 \psi + \frac{1}{2m} (-i\hbar \nabla - 2e\mathbf{A})^2 \psi = 0$$
$$\mathbf{j} = \frac{2e}{m} \text{Re} \left\{ \psi^* \left(-i\hbar \nabla - 2e\mathbf{A} \right) \psi \right\}$$

Abrikosov used these equations to explain vortices in type II superconductors

EMANUEL MAXWELL

BERNARD SERIN

Isotope Effect in Superconductors

Isotope Effect in the Superconductivity of Mercury

Emanuel Maxwell, Phys. Rev. 78, 477 (1950)

<u>Superconductivity of Isotopes of Mercury</u>, C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt Phys. Rev. **78**, 487 (1950)

ELECTRON-PHONON INTERACTION

John Bardeen (1908-1991)

(1901-1976)

Fritz London (1900-1954)

Max Born (1882 - 1970)

Herbert Fröhlich (1905-1991)

Richard Feynman (1918-1988)

Physicists Who Proposed Unsuccessful Microscopic Theories Prior to BSC From Failed Theories of Superconductivity, Jörg Schmalian

Experimental Results on Superconductors

- Meissner Effect
- Specific Heat
- Ultrasonic Absorption
- Magnetic Resonance
- Isotope Effect

Evidence for an Energy Gap

- Exponential Drop in Thermal Conductivity (1953)
- Low Temperature Specific Heat ~ e^{-(Tc/T)} (1954)
- Decrease in Ultrasonic Attenuation
- Decrease in Spin-Lattice Relaxation Time
- Microwave Absorption at hω~kT_c
- Transmission of Microwave and Far Infrared Radiation

Temperature-Dependent Ultrasonic Absorption in the Superconducting State, Morse and Bohm

Why Theory Was So Difficult

- Bloch Theorem ". . . that every theory of superconductivity can be disproved."
- Free Energy Difference Between Superconducting and Normal State is $(H_{CB})^2/(8\pi)$ or 1 part in 10^8
- Perturbation Theory in Powers of the Interaction
 Strength V Could Not be Used:

$$\Delta(E) \sim \exp(-1/(N(0)V))$$

• T_c was a fraction of the Debye Frequency $kT_c \sim \hbar \omega_D \exp(-1/(N(0)V))$

Reproduction of a slide made in 1955 by John Bardeen to illustrate the status of the theory at that time

QUANTUM THEORY

✓ ↓
Summerfeld-Bloch Electron-Vibration Interaction Co
Normal Metals (Isotope Effect) (H
?↓?

! ↓ / ! ENERGY GAP MODEL

► Pippard Theory

↑
London Theory

↑
OMAGNETIC PROPERTIE

ELECTROMAGNETIC PROPERTIES E=0. B=0 7

Coulomb Interactions (Heisenberg-Koppe)

Two Fluid Model (Gorter-Casimir, etc.)

THERMAL PROPERTIES

(Specific Heat, Thermal Conductivity, etc.)

Classic Books on Superconductivity

Superconductivity, Shoenberg, D. (David) Cambridge University Press, 1938, 2d ed. 1952

Superfluids, London, Fritz New York, Wiley, 1950-1954

Superconductivity, Experimental Part, Serin, B **Handbuch der Physik** (Berlin: Springer, 1956), Vol. 15:210-273.

Superconductivity, Theory Handbuch der Physik (Berlin: Springer, 1956), Vol. 15, 274-369

Superconductivity, Lynton, E. A. (Ernest Albert) London, Methuen; New York, Wiley, 1962, 3rd ed.1969

Superconductivity, Tinkham, Michael. New York, Gordon and Breach 1965

Superconductivity of Metals and Alloys, Gennes, Pierre-Gilles de Translated by P.A. Pincus, New York, W.A. Benjamin, 1966

Superconductivity, edited by R. D. Parks New York, M. Dekker, 1969

Career and Bio of Walther Meissner

- 1934 Appointed Chair technical physics at the <u>Technical</u> <u>University of Munich</u>.
- •After World War II, President of the Bavarian Academy of Sciences and Humanities
- •Appointed director of the academy's first low temperature research commission.
- •Meissner lived alone with his two dogs for the last several years of his life. Meissner died in Munich in 1974 at age 92
- Robert Ochsenfeld, German physicist, born May 18, 1901
- •1933 Co-discoverer of the Meissner-Ocsenfeld Effect.
- Died on December 5, 1993

Born: December 16, 1882

Berlin, Germany

Died: November 16, 1974

Munich, Germany

Robert Ochsenfeld was a German physicist born on May 18, 1901 in Hilchenbach (Helberhausen quarter). In 1933 he discovered with Walter Meissner the Meißner-Ochsenfeld effect. He died on December 5, 1993 in Hilchenbach.

Temperature-Dependent NMR in the Superconducting State – Data Hebel and Slichter Redfield

London Equations

Perfect diamagnetism implies that not only is the time derivative of B= 0 but B itself equals zero,

$$\frac{\partial \mathbf{j}_s}{\partial t} = \frac{n_s e^2}{m} \mathbf{E}, \qquad \nabla \times \mathbf{j}_s = -\frac{n_s e^2}{mc} \mathbf{B}. \qquad \mathbf{j}_s = -\frac{n_s e^2}{mc} \mathbf{A}. \qquad \nabla \times \mathbf{B} = \frac{4\pi \mathbf{j}}{c}$$

$$\nabla^2 \mathbf{B} = \frac{1}{\lambda^2} \mathbf{B}, \qquad \lambda = \sqrt{\frac{mc^2}{4\pi n_s e^2}}. \qquad B_z(x) = B_0 e^{-x/\lambda}. \qquad \nabla \times \mathbf{B} = \frac{4\pi \mathbf{j}}{c}$$

$$\mathbf{F} = e\mathbf{E} + \frac{e}{c}\mathbf{v} \times \mathbf{B}$$
 $\nabla \times \mathbf{E} = -\frac{1}{c}\frac{\partial \mathbf{B}}{\partial t}$

$$\frac{\partial}{\partial t} \left(\nabla \times \mathbf{j}_s + \frac{n_s e^2}{mc} \mathbf{B} \right) = 0.$$

Not only was the time derivative of the above expression equal to zero, but also that the expression in the parentheses must be identically zero

$$\mathbf{j}_{\mathbf{j}_s} = n_s e \mathbf{v}.$$
 $\mathbf{v} = \frac{1}{m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right).$ $\mathbf{j}_{\mathbf{j}_s} = -\frac{n_s e_s^2}{mc} \mathbf{A},$

London Equations

There are two London equations when expressed in terms of measurable fields: Here j_s is the superconducting current

$$\frac{\partial \mathbf{j}_s}{\partial t} = \frac{n_s e^2}{m} \mathbf{E}, \qquad \nabla \times \mathbf{j}_s = -\frac{n_s e^2}{mc} \mathbf{B}.$$

Isotope Effect in Hg, Sn and Tl

Meissner Effect

The Two-Fluid Model

In 1934 physicists Gorter and Casimir developed the two-fluid model of superconductivity in order to help explain the thermodynamic properties of superconductors. A finite fraction of the electrons are condensed into a sort of superfluid. At zero temperature there is complete condensation and all electrons participate in forming the superfluid. As the temperature of the system is increased from zero, a fraction of the electrons in the superfluid form a normal fluid, As the temperature increases to T_c the fraction of electrons contained in the superfluid goes to zero and the system experiences a second-order phase transition from the superconducting to the normal state. From the specific heat behavior Gorter and Casimir developed a formula relating the number of electrons in the superfluid to temperature.

$$\psi_{\rm S}(T)$$
 = $n_{\rm s}=n\left[1-(rac{T}{T_c})^4
ight]$

Where $n_s(T)$ is the fraction of electrons in the superfluid at temperature T.

