Artificial gauge fields and Zitterbewegung in a BEC

I. B. Spielman

Current team

L. J. LeBlanc, M. C. Beeler, R. A. Williams, K. Jiménez-García, and A. R. Perry

<u>Senior coworkers</u> J. V. Porto, and W. D. Phillips

Finase Mixed Funded by NIST, ARO's atomtronics MURI, DARPA's OLE program, and the NSF through the PFC at JQI.

MASPG, Dec. 2012

What are materials?

Ian's answer: "chunks of stuff."

Liquid Helium 125 mg/cm³

Ultracold neutral atoms

~10¹⁴ cm⁻³ or 100 ng/cm³ (air is ~1 mg/cm³)

Are these materials?

They can be fluids

They can be insulators

first: Greiner et al Nature (2002)

<u>They can be bosons</u>

They can be fermions

They can be molecules

They can be atoms

e.g., Regal Nature (2003)

<u>Starts like this</u>

400 K

Ends here every 20 s

50 nK

Cold atoms are good materials

Numerous properties can be controlled and measured on all relevant timescales and in any lab

Very simple Hamiltonians

<u>Cold atoms are bad materials</u> Short lived, and do so in vacuum

Interesting features **all** added by hand (complex experiments).

Magnetic field (T)

Magnetic field (T)

Atom

Atomic quantum materials

Vision: atoms + fields

A brief history of atomic physics

Metrology

Quantum mechanics: interference

Quantum mechanics: when is it?

$$\Delta v = \frac{2\pi\hbar}{m\Delta x}$$

The uncertainty in the position of a 100 kg person at 1 m/s is just 7 nano-nano-nano meters (7 x 10⁻³⁶ meters).

For people this just doesn't matter (even a rapidly moving 15 kg one)

Back to quantum mechanics

Randomness

Quantum mechanics is a full deterministic theory (no randomness) **until** measurement

Quantum mechanics: interference (IV)

Interference of *individual* buckyballs. One at a time.

Arndt et al. Nature (1999)

Quantum mechanics: interference (II)

Interference between two BEC's each with 10⁷ atoms

MIT: Andrews et al. Science (1997)

<u>Mass</u> 4 x 10⁻¹⁹ kg

Anatomy of an experiment: laser cooling

~3 billion laser cooled atoms $T \sim 500 \ \mu \text{K}$

Anatomy of an experiment: evaporation

Laser cooling

Evaporation

Anatomy of an experiment: detection

Rubidium 87: "The GaAs of atoms"

An atom is perhaps *the* quintessential quantum system

Rubidium 87: 5S_{1/2} ground state

What do magnetic fields do?

What do magnetic fields do?

To spins

Zeeman effect, example of ⁸⁷Rb

<u>To charges</u> Lorentz force

Type-2 superconductor in a *B* field: vortices

<u>References</u> H. Hess *et al*, PRL (1989); C. E. Sosolik *et al*, PRB (2003)

Vortices

Angular momentum is quantized in units of $\hbar = 1.05 \times 10^{-34}$ J s. Small!

This disposal unit has ~ 10^{33} quanta (10¹⁰ per water molecule)!

Vortices

About 10^{52} quanta (10^{14} per molecule)

Vortex: big

Vortex: little

10⁴ quanta (1 per atom)

Simple minded example: rotation

How to simulate magnetic fields

The Hamiltonian in the rotating frame has an effective field.

For high fields fine tuning is required.

ENS, JILA, MIT, ...

$$\hat{R}(\theta = \Omega t) = \exp\left(i\Omega t \hat{L}_z/\hbar\right)$$

$$H_r = \frac{\hbar^2}{2m} \left[\left(\hat{k}'_y + \frac{m\Omega}{\hbar}x\right)^2 + \left(\hat{k}'_x - \frac{m\Omega}{\hbar}y\right)^2 \right] + \frac{m\left(\omega^2 - \Omega^2\right)}{2} \left(x^2 + y^2\right)$$

Simplicity from complexity

Coupled systems intuition

Atom light interaction

Coupled States

Given the following geometry and levels

Atom light interaction

Coupled States

Given the following geometry and levels

Atom light interaction

Coupled States

Given the following geometry and levels

 $_{g\mu_BB} \left\{ egin{array}{cccc} & & & & & \ & & & \ & & & \ & & \ & & \ & & \$

$$\frac{\text{Dimensions}}{k_R = \frac{2\pi}{\lambda}, \ E_R = \frac{\hbar^2 k_R^2}{2m}}$$
$$E_R \approx h \times 3 \text{ kHz} = k_B \times 140 \text{ nK}$$

Atom light interaction

Coupled States

Given the following geometry and levels

 $_{g\mu_BB} \left\{ egin{array}{cccc} & & & & & & \ & & & & \ & & & & \ & & & \ & & \ & & \ & & \ & & \ & & \ &$

<u>References</u> [1] Juzeliūnas, et al., PRA 025602 **73** (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 240401 **97** (2006) [3] Günter et al, PRA **79** 011604 (2009) [4] IBS, PRA 063613 **79** (2009)

Atom light interaction

Coupled States

Given the following geometry and levels

 $_{g\mu_BB} \left\{ egin{array}{cccc} & & & & & \ & & & \ & & & \ & & \ & & \ & & \$

 $\frac{\text{Dimensions}}{k_R = \frac{2\pi}{\lambda}, \ E_R = \frac{\hbar^2 k_R^2}{2m}}$ $E_R \approx h \times 3 \text{ kHz} = k_B \times 140 \text{ nK}$

Atom light interaction

Given the following geometry and levels

States

States will be labeled by: (1) the "band index" and by (2) a quasi-momentum *k*

Coupled States

<u>References</u> [1] Juzeliūnas, et al., PRA 025602 **73** (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 240401 **97** (2006) [3] Günter et al, PRA **79** 011604 (2009) [4] IBS, PRA 063613 **79** (2009)

<u>Time evolution</u> In the sudden limit (Raman-Nath) Population oscillations yield coupling

States will be labeled by: (1) the "band index" and by (2) a quasi-momentum *k*

Fundamental intuition

Transfer function

$$\hat{H} = \frac{\hbar^2}{2m} \left\{ \left[k_x - \frac{qA_x(\delta, \Omega)}{\hbar} \right]^2 + k_y^2 \right\} + V(\mathbf{x})$$

where $\delta(x, y, t)$ and $\Omega(x, y, t)$

The detuning and coupling specify the local synthetic vector potential

<u>References</u> Y.-J. Lin et al, PRL (2009)

A laboratory tunable vector potential

<u>Idea</u>

We can control the *engineered* vector potential in time and space giving *synthetic* E and B fields.

Bias and quadrupole B fields = offset and gradient in detuning.

Transfer function

$$\hat{H} = \frac{\hbar^2}{2m} \left\{ \left[k_x - \frac{q A_x(\delta, \Omega)}{\hbar} \right]^2 + k_y^2 \right\} + V(\mathbf{x})$$

where $\delta(x, y, t)$ and $\Omega(x, y, t)$

The detuning and coupling specify the local synthetic vector potential

<u>References</u> Y.-J. Lin et al, PRL (2009)

Synthetic magnetic field

Synthetic magnetic field

Expected properties of BEC with fields

Vortex number

Spatial dependence gives magnetic fields and forces

Critical field for vortex formation

ZITTERBEWEGUNG: "JITTERING" MOTION

Schrodinger (1930) David and Cserti PRB (2010)

Zitterbewegung

Expected tiny "jittering" of electrons (small and very fast)

$$f = \frac{2mc^2}{h} = 2.5 \times 10^{20} \text{ Hz}$$

$$\delta x = \pm \frac{\lambda_C}{4\pi} = 2.4 \text{ pm}$$

$$\frac{dx}{dy} = \frac{1}{i\hbar} [\hat{x}, \hat{H}] = c\check{\sigma}_z = v$$

$$\frac{dv}{dt} = \frac{2mc^3}{\hbar}\check{\sigma}_y$$

$$\frac{d^2v}{dt^2} = \frac{4mc^4}{\hbar}\check{\sigma}_x\hat{k} - \left(\frac{2mc^2}{\hbar}\right)^2 v$$

$$\hat{h}_z = \frac{2mc^3}{\hbar}\check{\sigma}_x\hat{k} - \left(\frac{2mc^2}{\hbar}\right)^2 v$$

$$\hat{h}_z = \frac{2mc^3}{\hbar}\check{\sigma}_x\hat{k} - \left(\frac{2mc^2}{\hbar}\right)^2 v$$

$$\hat{h}_z = \frac{2mc^3}{\hbar}\check{\sigma}_x\hat{k} - \left(\frac{2mc^2}{\hbar}\right)^2 v$$

<u>Ref.</u> David and Cserti PRB (2010)

Proposals with cold atoms

Analog realized with individual atomic ions

Measuring x and p quadratures in harmonic trap

<u>Ref.</u> Gerritsma, et al. Nature (2010)

<u>BEC EXPERIMENT</u>

Theory Ref. Zhang, Gong, and C. H. Oh arXiv:1208.3005 (2012)

ULTRASLOW RELATIVISTIC SYSTEM

 $2mc^2 = \hbar\Omega_2 \approx h \times 1 \text{ kHz}$ $c = \hbar 2k_r/m_{\text{Rb}} \approx 11 \text{ mm/s}$

<u>Ref.</u> Zhang, Gong, and C. H. Oh arXiv:1208.3005 (2012)

ULTRASLOW RELATIVISTIC SYSTEM

 $2mc^2 = \hbar\Omega_2 \approx h \times 1 \text{ kHz}$ $c = \hbar 2k_r/m_{\text{Rb}} \approx 11 \text{ mm/s}$

Measure real position

<u>Ref.</u> Zhang, Gong, and C. H. Oh arXiv:1208.3005 (2012)

L. J. Leblanc et al (in preparation)

L. J. Leblanc et al (in preparation)

PHYSICAL INTERPRETATION

<u>Ref.</u> L. J. Leblanc *et al* (in preparation)

PHYSICAL INTERPRETATION

Rabi oscillations in a 2-level system

Two level system

Time of flight images

Evolution Time

PHYSICAL INTERPRETATION

Rabi oscillations in a 2-level system

Zitterbewegung

Time of flight images

Evolution Time