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Artificial gauge fields and Zitterbewegung in a BEC



Ian’s answer: “chunks of stuff.”

What are materials?

Aerogel
1 mg/cm3

Si
2.3 g/cm3

Liquid Helium
125 mg/cm3



Ultracold neutral atoms
~1014 cm-3 or 100 ng/cm3

(air is ~1 mg/cm3)

Are these materials?



They can be insulators

They can be fluids

We associate images with non-negligible f as being in the
SF phase [19]. We emphasize that superfluidity is a trans-
port phenomena and cannot unambiguously be associated
with features in the momentum distribution [10,11,20].
This association is also imperfect at T > 0 because in 2D
trapped systems we expect a discernible condensate frac-
tion even after the vortex pairs of a BKT SF unbind [21],
destroying the 2D SF. f vanishes only when the resulting
phase-fluctuating quasicondensate vanishes [13,22].

To characterize the transition from SF to normal, we
extract two independent quantities from TOF images: f,
and an ‘‘energy scale’’ !. We also measure a related
quantity, the full width at half maximum (FWHM) ! of
the quasimomentum distribution, which we compare to
theory. As the lattice depth is increased f vanishes con-
currently with a sudden increase in !, abrupt signatures
that we associate with the transition.

We produce nearly pure 3D 87Rb BECs with NT !
1:2"4# $ 105 atoms in the jF ! 1; mF ! %1i state [2]. A
pair of linearly polarized, " ! 820 nm laser beams forms a
30"2#ER deep vertical optical lattice along ẑ that divides
the 3D BEC into about 70 2D systems (turn-on time !
200 ms). The single photon recoil wave vector and energy
are kR ! 2#=" and ER ! @2k2R=2m ! h$ 3:4 kHz; m is
the atomic mass and h is Planck’s constant. The largest 2D
system, containing & 3000 atoms, has a chemical poten-
tial $2D ! h$ 600"100# Hz and we measure a tempera-
ture kBT ! kB $ 33"4# nK ! h$ 700"70# Hz. Since the

first vibrational spacing h$ 33"1# kHz ' $2D, kBT, this
system is well into the 2D regime. In addition, a weaker,
square 2D lattice in the x̂-ŷ plane is produced by a second
beam arranged in a folded-retroreflected configuration
[23], linearly polarized in the x̂-ŷ plane (turn-on time !
100 ms [24]). The intensities of both lattices follow ex-
ponentially increasing ramps, with 50 and 25 ms time
constants, respectively, and reach their peak values con-
currently. These time scales are chosen to be adiabatic with
respect to mean-field interactions, vibrational excitations,
and tunneling within each 2D system. The final depth of
the x̂-ŷ lattice determines U=t and ranges from V ! 0 to
25"2#ER [25]. The lattice depths are calibrated by pulsing
the lattice for 3 $s and observing the resulting atom dif-
fraction [26].

We calculate U=t using a 2D band-stucture model and
the s-wave scattering length [27]. The (10% uncertainty
in U=t stems from the uncertainty in lattice depth [28].

Once both lattices are at their final intensity, the system
consists of an array of 2D gases each in a square lattice of
depth V with a typical density of 1 atom per lattice site. The
atoms are held for 30 ms, and all confining potentials are
abruptly removed (the lattice and magnetic potentials turn
off in & 1 $s and ’ 300 $s, respectively). Initially con-
fined states are projected onto free particle states which
expand for a 20.1 ms TOF [29], when they are detected by
resonant absorption imaging. Apart from effects of atomic
interactions during expansion and the initial size of the
sample, initial momentum maps into final position, so each
image approximates the x̂-ŷ projection of the momentum
distribution. We fit each momentum distribution to a sim-
ple function which describes the distributions over the full
range of U=t studied here, with just three free parameters.

First, we model the broad background as a thermal
distribution of noninteracting classical particles in a 2D
sinusoidal band with states labeled by quasimomentum qx
and qy, n"qx; qy# / exp)2"cos#qx=kR * cos#qx=kR#=!+;
this contributes two fitting parameters: ! and the non-
condensed atom number. In the shallow lattice limit, !
gives the temperature, ! ! kBT=t. This fit does not dis-
tinguish atoms thermally occupying higher momentum
states from atoms occupying these states in the ground
state wave function, i.e., from the quantum depletion of
the SF. n"qx; qy# multiplied by a suitable Wannier function
correctly describes the momentum distribution of atoms in
the MI phase to first order in t=U where ! ! U=4t is
unconnected to temperature. Our function fits the random
phase approximation (RPA) momentum distribution fairly
well even as higher order terms become important [2,30].

The second portion of the momentum distribution con-
sists of a narrow peak, which we interpret as Bose-
condensed atoms. We take the narrow peak to be the
inverted parabola of a Thomas-Fermi profile (of fixed
width for all comparable data [31]), characterized by a
single fitting parameter, condensed number.

The observed condensate peak width after TOF stems
largely from initial system size, not interaction effects
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FIG. 1 (color). Momentum distributions and cross sections at
U=t ! 4"1#, 8(1), and 20(2). Each row shows a single momen-
tum distribution normalized by the total atom number; the lines
in the top right panel indicate trajectories along which four cross
sections were taken. The left panel shows the average of these
four sections (black solid line); the red dashed lines denote the fit
to the bimodal distribution.
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They can be fermionsThey can be bosons

e.g., Regal Nature (2003)

They can be atomsThey can be molecules



They can be 2DThey can be 3D They can be 1D
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)

NATURE|Vol 440|13 April 2006 LETTERS

901

e.g., Kinoshita Nature (2006)

©!2006!Nature Publishing Group!

!

function of Lx at a low and a high temperature, along with the fits by a
power-law decaying function.
Figure 3b summarizes the fitted values of the exponent a in

different temperature regimes, and constitutes the first main result
of this Letter. Starting at high temperatures, for values of c0 up to
about 13%, a is approximately constant and close to 0.5. When the
temperature is reduced further,a rapidly drops to about 0.25, and for
even lower temperatures (larger c0) it levels off. We thus clearly
observe a transition between two qualitatively different regimes at
high and low temperatures. The values of a above and below the
transition are in agreement with the theoretically expected jump in
the superfluid density at the BKT transition in a uniform system.
However, this quantitative agreement might be partly fortuitous.
Even though we concentrated on the quasi-uniform part of the
images, the geometrical effects in our elongated samples could still be
important. Ultimately, at extremely low temperature, a should
slowly tend to zero and the gas should become a pure, fully coherent
Bose–Einstein condensate. We could not reach this regime in the
present experiments owing to the residual heating discussed above.
Even without precise thermometry, we can estimate the cloud’s

temperature and density at the onset of quasi-long-range coherence.
For images with c0 ¼ 0.15, the temperature inferred from the wings
of the atom distribution after TOF is 290 ^ 40 nK, corresponding to
a thermal wavelength of l ¼ 0.3 mm. From the length of the quasi-
condensate we deduce the number of condensed atoms
NC ¼ 11,000 ^ 3,000, and the peak condensate density (in the
trap centre) rC ¼ (5 ^ 1) £ 109 cm22. This gives rCl

2 ¼ 6 ^ 2.
BKT theory for a uniform system predicts the transition at

rSl
2 ¼ 4, where rS is the superfluid density. The two values are in

fair agreement, but we note that the exact relation between rC and rS

in 2D atomic gases will require further experimental and theoretical
investigation. For example, our observation of a < 0.5 for a finite
value of c0 suggests that the superfluid density rS might be zero even
if the condensate density rC is finite.
The key role in the microscopic BKT theory is played by vortices,

localized topological defects in the phase of the condensate. In
contrast to the smooth variation of the fringe phase J(x) created
by long-wavelength phonons (Fig. 1d), a free vortex in one of the
condensates should appear as a sharp dislocation in the interference
pattern16,24, with J(x) changing abruptly across a dislocation line
parallel to the expansion axis z. We indeed occasionally observe such
dislocations. Examples of images containing one and several disloca-
tions are shown in Fig. 4a and b, respectively. The tightly bound
vortex–antivortex pairs are not detectable in our experiments
because they create only infinitesimal phase slips in the interference
pattern. Other phase configurations which could mimic the appear-
ance of a vortex, such as a dark soliton aligned with the imaging
direction, can be discarded on theoretical grounds24.
Figure 4c shows the frequency with which we detect sharp

dislocations at different temperatures. For the count we consider
only the central, 30-mm-wide region of each image, which is smaller
than the length of our smallest quasi-condensates. We note that we
detect only a subset of vortices—those that are well isolated and close
to the centre of the cloud. We also note that thermally activated
phonon modes with a very short wavelength along x can in principle
contribute to the count. Their contribution is expected to be non-
negligible only at the highest temperatures, at which a detailed
theoretical analysis would be needed to separate their effect from
that of the vortices.
The observed sudden onset of vortex proliferation with increasing

temperature constitutes the second main result of this Letter. Further,
this onset coincides with the loss of quasi-long-range coherence
(Fig. 3b). These two observations together provide conclusive evidence
for the observation of the BKT crossover in this system.

Figure 3 | Emergence of quasi-long-range order in a 2D gas. a, Examples of
average integrated interference contrasts kC̃2(Lx)l are shown for a low (blue
circles, c0 ¼ 0.24) and a high (red squares, c0 ¼ 0.13) temperature; Lx is the
integration length. The lines are fits to the data by the power-law function
1/(Lx)

2a, and give a ¼ 0.29 ^ 0.01 (low temperature) and a ¼ 0.46 ^ 0.01
(high temperature). The fitting range, indicated by the solid part of the line,
is constrained by the conditions Lx .. Ly on the left and cx . c0/2 on the
right. b, Decay exponent a as a function of c0. Dashed lines indicate the
theoretically expected values of a above and below the BKT transition in a
uniform system. Error bars indicate the standard deviation of the results
from different experimental runs.

Figure 4 | Proliferation of free vortices at high temperature. a, Example of
an interference pattern showing a sharp dislocation that we attribute to the
presence of a free vortex in one of the interfering clouds. b, Interference
pattern showing several dislocations. c, Fraction of images showing at least
one dislocation in the central, 30-mm-wide region, plotted as a function of c0.
The error bars show the statistical uncertainty, given by the square root of
the number of images with dislocations. Inset, histogram of the phase
jumps DJ i ¼ jJ(x i) 2 f(x iþ1)j between adjacent CCD pixel columns, for
the set of images in the bin c0 ¼ 0.08. An image is counted as showing a
dislocation if at least one of theDJ i exceeds 2p/3 (threshold indicated by the
dashed line). The distance between adjacent columns is 2.7 mm and the
count runs over the 10 central columns. There are 97 images contributing to
this histogram, hence 970 counts, among which 16 counts (corresponding to
13 different images) exceed the threshold.
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Cold atoms are good materials

Numerous properties can 
be controlled and measured

on all relevant timescales and
in any lab

Very simple Hamiltonians

Cold atoms are bad materials
Short lived, and do so in vacuum

Interesting features all added
by hand (complex experiments).

!"#$%&'()%* !"#$%&+%,#-#.%*
/#$%-
+.-%01."

232 2345



Electrons

ab initio
understand is hard 

Electron Materials

e-



Electrons

ab initio
understand is hard 

Electron Materials

Atom

e-

Atoms

ab initio
is easier

(but still hard)

Atomic quantum materials

ñ



Vision: atoms + fields

Bose-Einstein condensation Quantum Hall effects
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Quantum mechanics: interference

=

Light
massless

Electrons
m = 9.8 x 10-31 kg

=e-

C-60
m = 1.2 x 10-24 kg

=
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Fig. 2a, can be achieved by allowing for a gaussian variation of the
slit widths over the grating, with a mean open gap width centred at
s0 ¼ 38 nm with a full-width at half-maximum of 18 nm. That best-
fit value for the most probable open gap width s0 is significantly
smaller than the 55 ! 5 nm specified by the manufacturer (T. A.
Savas and H. Smith, personal communication). This trend is
consistent with results obtained in the diffraction of noble gases
and He clusters, where the apparently narrower slit was interpreted
as being due to the influence of the van der Waals interaction with
the SiNx grating during the passage of the molecules15. This effect is
expected to be even more pronounced for C60 molecules owing to
their larger polarizability. The width of the distribution seems also
justified in the light of previous experiments with similar gratings:
both the manufacturing process and adsorbents could account
for this fact (ref. 16, and T. A. Savras and H. Smith, personal
communication). Recently, we also observed interference of C70

molecules.
Observation of quantum interference with fullerenes is interest-

ing for various reasons. First, the agreement between our measured
and calculated interference contrast suggests that not only the
highly symmetric, isotopically pure 12C60 molecules contribute to
the interference pattern but also the less symmetric isotopomeric
variants 12C59

13C and 12C58
13C2 which occur with a total natural

abundance of about 50%. If only the isotopically pure 12C60

molecules contributed to the interference, we would observe a
much larger background.

Second, we emphasize that for calculating the de Broglie wave-
length, l ¼ h=Mv, we have to use the complete mass M of the object.
Thus, each C60 molecule acts as a whole undivided particle during its
centre-of-mass propagation.

Last, the rather high temperature of the C60 molecules implies
broad distributions, both of their kinetic energy and of their internal
energies. Our good quantitative agreement between experiment and
theory indicates that the latter do not influence the observed
coherence. All these observations support the view that each C60

molecule interferes with itself only.

In quantum interference experiments, coherent superposition
only arises if no information whatsoever can be obtained, even in
principle, about which path the interfering particle took. Interac-
tion with the environment could therefore lead to decoherence. We
now analyse why decoherence has not occurred in our experiment
and how modifications of our experiment could allow studies of
decoherence using the rich internal structure of fullerenes.

In an experiment of the kind reported here, ‘which-path’ infor-
mation could be given by the molecules in scattering or emission
processes, resulting in entanglement with the environment and a
loss of interference. Among all possible processes, the following are
the most relevant: decay of vibrational excitations via emission of
infrared radiation, emission or absorption of thermal blackbody
radiation over a continuous spectrum, Rayleigh scattering, and
collisions.

When considering these effects, one should keep in mind that
only those scattering processes which allow us to determine the path
of a C60 molecule will completely destroy in a single event the
interference between paths through neighbouring slits. This
requires l p d; that is, the wavelength l of the incident or emitted
radiation has to be smaller than the distance d between neighbour-
ing slits, which amounts to 100 nm in our experiment. When this
condition is not fulfilled decoherence is however also possible via
multi-photon scattering7,8,17.

At T ! 900 K, as in our experiment, each C60 molecule has on
average a total vibrational energy of Ev ! 7 eV (ref. 18) stored in 174
vibrational modes, four of which may emit infrared radiation at
lvib ! 7–19 "m (ref. 10) each with an Einstein coefficient of
Ak ! 100 s # 1 (ref. 18). During its time of flight from the grating
towards the detector (t ! 6 ms) a C60 molecule may thus emit on
average 2–3 such photons.

In addition, hot C60 has been observed19 to emit continuous
blackbody radiation, in agreement with Planck’s law, with a mea-
sured integrated emissivity of e ! 4:5 ð ! 2:0Þ $ 10 # 5 (ref. 18). For
a typical value of T ! 900 K, the average energy emitted during the
time of flight can then be estimated as only Ebb ! 0:1 eV. This
corresponds to the emission of (for example) a single photon at
l ! 10 "m. Absorption of blackbody radiation has an even smaller
influence as the environment is at a lower temperature than the
molecule. Finally, since the mean free path for neutral C60 exceeds
100 m in our experiment, collisions with background molecules can
be neglected.

As shown above, the wavelengths involved are too large for single
photon decoherence. Also, the scattering rates are far too small to
induce sufficient phase diffusion. This explains the decoupling of
internal and external degrees of freedom, and the persistence of
interference in our present experiment.

A variety of unusual decoherence experiments would be possible
in a future extension of the experiment, using a large-area inter-
ferometer. A three-grating Mach–Zehnder interferometer6 seems to
be a particularly favourable choice, since for a grating separation of
up to 1 m we will have a molecular beam separation of up to 30 "m,
much larger than the wavelength of a typical thermal photon. In this
case, the environment obtains ‘which-path’ information even
through a single thermal photon, and the interference contrast
should thus be completely destroyed. The parameters that could be
controlled continuously in such an experiment would then be the
internal temperature of the fullerenes, the temperature of the
environment, the intensity and frequency of external laser radiation,
the interferometer size, and the background pressure of various
gases.

An improved interferometer could have other applications. For
example, in contrast to previous atom-optical experiments20–22

which were limited to the interaction with only a few lines in the
whole spectrum, interferometry with fullerenes would enable us to
study these naturally occurring and ubiquitous thermal processes
and wavelength-dependent decoherence mechanisms for (we

letters to nature
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Figure 2 Interference pattern produced by C60 molecules. a, Experimental recording
(open circles) and fit using Kirchhoff diffraction theory (continuous line). The expected
zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in
the text. b, The molecular beam profile without the grating in the path of the molecules.



Quantum mechanics: when is it?

∆v =
2π�
m∆x

The uncertainty in the position of a 100 kg person at 1 m/s is just
7 nano-nano-nano-nano meters (7 x 10-36 meters).

For people this just doesn’t matter (even a rapidly moving 15 kg one)



Back to quantum mechanics
Randomness

Quantum mechanics is a full deterministic theory (no randomness) until measurement



Quantum mechanics: interference (IV)

Interference of individual buckyballs.
One at a time.

Arndt et al. Nature (1999)
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Fig. 2a, can be achieved by allowing for a gaussian variation of the
slit widths over the grating, with a mean open gap width centred at
s0 ¼ 38 nm with a full-width at half-maximum of 18 nm. That best-
fit value for the most probable open gap width s0 is significantly
smaller than the 55 ! 5 nm specified by the manufacturer (T. A.
Savas and H. Smith, personal communication). This trend is
consistent with results obtained in the diffraction of noble gases
and He clusters, where the apparently narrower slit was interpreted
as being due to the influence of the van der Waals interaction with
the SiNx grating during the passage of the molecules15. This effect is
expected to be even more pronounced for C60 molecules owing to
their larger polarizability. The width of the distribution seems also
justified in the light of previous experiments with similar gratings:
both the manufacturing process and adsorbents could account
for this fact (ref. 16, and T. A. Savras and H. Smith, personal
communication). Recently, we also observed interference of C70

molecules.
Observation of quantum interference with fullerenes is interest-

ing for various reasons. First, the agreement between our measured
and calculated interference contrast suggests that not only the
highly symmetric, isotopically pure 12C60 molecules contribute to
the interference pattern but also the less symmetric isotopomeric
variants 12C59

13C and 12C58
13C2 which occur with a total natural

abundance of about 50%. If only the isotopically pure 12C60

molecules contributed to the interference, we would observe a
much larger background.

Second, we emphasize that for calculating the de Broglie wave-
length, l ¼ h=Mv, we have to use the complete mass M of the object.
Thus, each C60 molecule acts as a whole undivided particle during its
centre-of-mass propagation.

Last, the rather high temperature of the C60 molecules implies
broad distributions, both of their kinetic energy and of their internal
energies. Our good quantitative agreement between experiment and
theory indicates that the latter do not influence the observed
coherence. All these observations support the view that each C60

molecule interferes with itself only.

In quantum interference experiments, coherent superposition
only arises if no information whatsoever can be obtained, even in
principle, about which path the interfering particle took. Interac-
tion with the environment could therefore lead to decoherence. We
now analyse why decoherence has not occurred in our experiment
and how modifications of our experiment could allow studies of
decoherence using the rich internal structure of fullerenes.

In an experiment of the kind reported here, ‘which-path’ infor-
mation could be given by the molecules in scattering or emission
processes, resulting in entanglement with the environment and a
loss of interference. Among all possible processes, the following are
the most relevant: decay of vibrational excitations via emission of
infrared radiation, emission or absorption of thermal blackbody
radiation over a continuous spectrum, Rayleigh scattering, and
collisions.

When considering these effects, one should keep in mind that
only those scattering processes which allow us to determine the path
of a C60 molecule will completely destroy in a single event the
interference between paths through neighbouring slits. This
requires l p d; that is, the wavelength l of the incident or emitted
radiation has to be smaller than the distance d between neighbour-
ing slits, which amounts to 100 nm in our experiment. When this
condition is not fulfilled decoherence is however also possible via
multi-photon scattering7,8,17.

At T ! 900 K, as in our experiment, each C60 molecule has on
average a total vibrational energy of Ev ! 7 eV (ref. 18) stored in 174
vibrational modes, four of which may emit infrared radiation at
lvib ! 7–19 "m (ref. 10) each with an Einstein coefficient of
Ak ! 100 s # 1 (ref. 18). During its time of flight from the grating
towards the detector (t ! 6 ms) a C60 molecule may thus emit on
average 2–3 such photons.

In addition, hot C60 has been observed19 to emit continuous
blackbody radiation, in agreement with Planck’s law, with a mea-
sured integrated emissivity of e ! 4:5 ð ! 2:0Þ $ 10 # 5 (ref. 18). For
a typical value of T ! 900 K, the average energy emitted during the
time of flight can then be estimated as only Ebb ! 0:1 eV. This
corresponds to the emission of (for example) a single photon at
l ! 10 "m. Absorption of blackbody radiation has an even smaller
influence as the environment is at a lower temperature than the
molecule. Finally, since the mean free path for neutral C60 exceeds
100 m in our experiment, collisions with background molecules can
be neglected.

As shown above, the wavelengths involved are too large for single
photon decoherence. Also, the scattering rates are far too small to
induce sufficient phase diffusion. This explains the decoupling of
internal and external degrees of freedom, and the persistence of
interference in our present experiment.

A variety of unusual decoherence experiments would be possible
in a future extension of the experiment, using a large-area inter-
ferometer. A three-grating Mach–Zehnder interferometer6 seems to
be a particularly favourable choice, since for a grating separation of
up to 1 m we will have a molecular beam separation of up to 30 "m,
much larger than the wavelength of a typical thermal photon. In this
case, the environment obtains ‘which-path’ information even
through a single thermal photon, and the interference contrast
should thus be completely destroyed. The parameters that could be
controlled continuously in such an experiment would then be the
internal temperature of the fullerenes, the temperature of the
environment, the intensity and frequency of external laser radiation,
the interferometer size, and the background pressure of various
gases.

An improved interferometer could have other applications. For
example, in contrast to previous atom-optical experiments20–22

which were limited to the interaction with only a few lines in the
whole spectrum, interferometry with fullerenes would enable us to
study these naturally occurring and ubiquitous thermal processes
and wavelength-dependent decoherence mechanisms for (we
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Figure 2 Interference pattern produced by C60 molecules. a, Experimental recording
(open circles) and fit using Kirchhoff diffraction theory (continuous line). The expected
zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in
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Interference between two BEC’s
each with 107 atoms

MIT: Andrews et al. Science (1997)

Mass
4 x 10-19 kg
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Anatomy of an experiment: laser cooling

~3 billion laser cooled atoms
T ~ 500 µK



Anatomy of an experiment: evaporation

Evaporation

Laser cooling



Anatomy of an experiment: detection

Laser cooling

Evaporation

Experiment

Absorption imaging



Rubidium 87: “The GaAs of atoms”
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5P
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7S

4D

5D
6P

Electronic ground state

h x 385 THz = 1.6 eV = kB x 18,000 K

An atom is perhaps the quintessential quantum system



Rubidium 87: 5S1/2 ground state

F=1 manifold

h x 6.8 GHz = 2.8 µeV 
                        = kB x 0.3 K



Energy in dimensions of Hz

What do magnetic fields do?

To spins

Zeeman effect, example of 87Rb

To charges
Lorentz force

Freshman mechanics
Mechanical variables and forces

B



Energy in dimensions of Hz

What do magnetic fields do?

To spins

Zeeman effect, example of 87Rb

To charges
Lorentz force

Junior mechanics
Canonical variables and vector potential

B



Type-2 superconductor in a B field: vortices

References
H. Hess et al, PRL (1989); C. E. Sosolik et al, PRB (2003)



Vortices

Angular momentum is quantized in units of ћ = 1.05x10-34 J s.
Small!

This disposal unit has ~1033 quanta (1010 per water molecule)!



Vortices

About 1052 quanta (1014 per molecule) 



Vortex: big

About 1095 quanta (1027 per hydrogen)



Vortex: little

104 quanta (1 per atom) 



Simple minded example: rotation

How to simulate magnetic fields

The Hamiltonian in the rotating frame has an effective 
field. 

For high fields fine tuning is required.

ENS, JILA, MIT, ...

Rotation

JILA MIT



Simplicity from complexity

Raman dressed states
Brief description of implementation and theory
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Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Coupled States
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Atom light interaction: pictures
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Atom light interaction: pictures

Time evolution
In the sudden limit (Raman-Nath)

Population oscillations yield coupling
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A laboratory tunable vector potential

Idea Transfer function

We can control the engineered vector potential
in time and space giving synthetic E and B fields.

Bias and quadrupole B fields = offset and gradient
in detuning.
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Synthetic magnetic field

A non-uniform vector potential

Spatial dependence gives magnetic fields and forces
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Synthetic magnetic field

Outcome
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Expected properties of BEC with fields

Critical field for vortex formation

Spatial dependence gives magnetic fields and forces 12
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Atomic Zitterbewegung 
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Refs. 
Schrodinger (1930) 

David and Cserti PRB (2010)

ZITTERBEWEGUNG: “JITTERING” MOTIONultracold atoms subject to a Dirac Hamiltonian.

In this experiment, we study the motion of particles along a single (x) direction as descibed

by the 1 + 1-dimensional Dirac equation

ĤDψ =
�
cp̂xσ̌z +mec

2σ̌x

�
ψ, (1)

where c is the speed of light, me the particles’ mass (and mec
2

its rest energy), p̂x the momen-

tum operator, and σx(z) the Pauli spin operators, and ψ a 2-spinor whose components represent

the positive- and negative-energy solutions. For massless particles, the equation would sim-

ply describe free electrons or positrons with opposite momenta, as shown in the dashed lines

in Fig. 1B; the mass couples these solutions and creates an avoided crossing with repulsion

proportional to the rest energy, as seen in the solid lines of Fig. 1B.

We engineer an equivalent Hamiltonian for ultracold
87

Rb atoms by coupling the internal

Zeeman levels of the F = 1 ground state with counterpropagating Raman lasers, which reso-

nantly couple energy and momentum between the laser fields and the atoms (4,5) and gives two

dressed states that act as the positive and negative energy components. The laser wavelength

λL = 790.2 nm establishes the relevant length scale and the laser intensity determines the cou-

pling h̄Ω between states (with energies on the order of the recoil energy from a photon, EL =

h
2
/2λ2

Lmat), giving a mapping of the parameters of Eq. 1 from c → 2h̄kL/mat ≈ 11 mm/s and

mec
2 → h̄Ω/2 ≈ h× 1 kHz.

Zitterbewegung arises from the noncommutativity between the Pauli matrices associated

with the two terms in the Dirac equation; in the Heisenberg picture, the position and momentum

operators have oscillatory components. We prepare an atomic state as an eigenstate of the Pauli

σx operator, and suddenly turn on the Hamiltonian HD. The expectation values of position and

momentum observables

�x(t)� = x(0) +
λC

4π
sin(ωZt) (2)

2

-2

0

2

En
er

gy
,  

m
c2

-2 0 2
Momentum,  p/mc

2mc
2

c



Zitterbewegung

Ref. 
David and Cserti PRB (2010)

Expected tiny “jittering” of electrons (small and very fast)

ultracold atoms subject to a Dirac Hamiltonian.

In this experiment, we study the motion of particles along a single (x) direction as descibed

by the 1 + 1-dimensional Dirac equation

ĤDψ =
�
cp̂xσ̌z +mec

2σ̌x

�
ψ, (1)

where c is the speed of light, me the particles’ mass (and mec
2

its rest energy), p̂x the momen-

tum operator, and σx(z) the Pauli spin operators, and ψ a 2-spinor whose components represent

the positive- and negative-energy solutions. For massless particles, the equation would sim-

ply describe free electrons or positrons with opposite momenta, as shown in the dashed lines

in Fig. 1B; the mass couples these solutions and creates an avoided crossing with repulsion

proportional to the rest energy, as seen in the solid lines of Fig. 1B.

We engineer an equivalent Hamiltonian for ultracold
87

Rb atoms by coupling the internal

Zeeman levels of the F = 1 ground state with counterpropagating Raman lasers, which reso-

nantly couple energy and momentum between the laser fields and the atoms (4,5) and gives two

dressed states that act as the positive and negative energy components. The laser wavelength

λL = 790.2 nm establishes the relevant length scale and the laser intensity determines the cou-

pling h̄Ω between states (with energies on the order of the recoil energy from a photon, EL =

h
2
/2λ2

Lmat), giving a mapping of the parameters of Eq. 1 from c → 2h̄kL/mat ≈ 11 mm/s and

mec
2 → h̄Ω/2 ≈ h× 1 kHz.

Zitterbewegung arises from the noncommutativity between the Pauli matrices associated

with the two terms in the Dirac equation; in the Heisenberg picture, the position and momentum

operators have oscillatory components. We prepare an atomic state as an eigenstate of the Pauli

σx operator, and suddenly turn on the Hamiltonian HD. The expectation values of position and

momentum observables

�x(t)� = x(0) +
λC

4π
sin(ωZt) (2)
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Proposals with cold atoms

Ref. 
Vaishnav and Clark PRL (2008)

Merkl, Zimmer, Juzeliūnas, and Ohberg EPL (2008)
Zhang, Gong, and C. H. Oh arXiv:1208.3005 (2012)

Atomic Zitterbewegung

0 5 10 15 20 25 30 35 40
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t*2V

X

0 20 40 60 80 100 120
0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t*2V

X

0 5 10 15 20 25 30
4

3

2

1

0

1

2

3

4

t*2V

X

(a)

(c)

(b)

(d)

(e) (f )

Fig. 3: Left column: the density as a function of time shows

Zitterbewegung for different energy gaps ((a) with Vz = !
2κ2

2m

and (c) with Vz = 3!
2κ2

2m ) and in (e) with an initial momentum
k0 = κ

′. Right column: the centre of mass shows the expected
oscillation ((b) and (d)) with an upward drift. With an initial
momentum kick the behaviour is different compared to (a)
and (c), as can be seen in (e) and (f), where the Zitterbewegung
breaks down after a few oscillations as the two states are
moving in different directions. The initial spinor was in (a)–(d)
(1, 1, )T /

√
2 and in (e) and (f) (1, eiπ/4)T /

√
2.

is induced by the potential term in eq. (13) (compare
with eq. (23) in [6] or eq. (11) in [3]). Apart from the
non-vanishing initial momentum leading inevitably to
a vanishing of the interference effect, a finite width of
the wave packets also leads to an attenuation of the
Zitterbewegung. As shown in fig. 2 the attenuation occurs
in both limits, i.e., the Schrödinger and the Dirac limit.
In the following we analyse the exact solution (18) and

study the role of the finite width of the wave packets on
the Zitterbewegung. To this end we consider the center of
mass of the wave packets, i.e.

〈x(τ)〉 = i
∫ ∞

−∞

dkΨ̄†(k, τ)∂kΨ̄(k, τ) =

1

∆
√
π

∫ ∞

−∞

dke−
k
2

∆2

(

4k2

ω2k
τ +
Ṽ 2z
ω3k
sin(2ωkτ)

)

, (27)
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Fig. 4: Rabi type oscillations superimposing the Zitterbewe-
gung can be seen for an initial preparation with non-zero
momentum k0 = κ

′. The dynamics is sensitive to the initial
conditions. Panels (a) and (b) show |Ψ1(t, x)|2 for the initial
spinor (1, 1)T /

√
2 and (1, eiπ/4)T /

√
2, respectively, whereas

panels (c) and (d) show |Ψ2(t, x)|2 for the initial spinor
(1, 1)T /

√
2 and (1, eiπ/4)T /

√
2. The population of the dark

states is depicted in (e) with (1, 1)T /
√
2 and in (f) with

(1, eiπ/4)T /
√
2 as initial states.

where we have assumed k0 = 0. From the first term under
the integral sign we obtain a drift term for the centre of
mass,

xd = τ

[

1−
√
π
Ṽz
∆
e
Ṽ
2
z

∆2 Erfc

(

Ṽz
∆

)]

, (28)

where Erfc is the complementary Error function. In the
limit of Ṽz/∆% 1, and using the asymptotic expansion of
the Error function,

Erfc(x) =
e−x

2

x
√
π

(

1+
∞
∑

n=1

(−1)n
(2n− 1)!!
(2x2)n

)

, (29)

we obtain a reduced drift as a function of increasing Ṽz/∆.
This is a finite-size effect and stems from the finite width
of the wave packet. The drift motion has already been
identified in our numerical analysis as shown in fig. 3.

54002-p5

Observing Zitterbewegung with Ultracold Atoms

J. Y. Vaishnav and Charles W. Clark
Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg MD 20899 USA

We propose an optical lattice scheme which would permit the experimental observation of Zitterbewegung
(ZB) with ultracold, neutral atoms. A four-level “tripod” variant of the usual setup for stimulated Raman adi-
abatic passage (STIRAP) has been proposed for generating non-Abelian gauge fields [1]. Dirac-like Hamil-
tonians, which exhibit ZB, are simple examples of such non-Abelian gauge fields; we show how a variety of
them can arise, and how ZB can be observed, in a tripod system. We predict that the ZB should occur at
experimentally accessible frequencies and amplitudes.

A driving force behind the study of ultracold atoms is their
potential use as highly tunable quantum simulators for physi-
cal systems, ranging from quantum phase transitions in solids
[2] to black holes [3]. In particular, the high degree of control
over length and time scales in cold atom experiments allows
for the possibility of observing phenomena that are experi-
mentally inaccessible in their original counterpart systems. In
this paper, we propose an experiment which simulates the rel-
ativistic (and recently, controversial [4]) phenomenon of zit-

terbewegung (ZB), a jittering motion caused by interference
between the positive and negative energy components of the
wavefunction of a Dirac fermion.

For a relativistic electron, the ZB frequency is of the order
of mc

2/� ≈ 1020 s−1, and the amplitude comparable to the
Compton wavelength, h/mc ≈ 10−12 m. ZB has never been
observed for free electrons, as these time and length scales
render it experimentally inaccessible. The presence of ZB is,
however, a general feature of spinor systems with linear dis-
persion relations. Trapped ions [5] as well as condensed mat-
ter systems, including graphene [6, 7, 8] and semiconductor
quantum wires [9, 10], have been proposed as candidate sys-
tems for observing ZB.

In this paper, we propose a scheme for observing ZB in
ultracold neutral atoms. A four-level “tripod” variant of the
usual setup for stimulated Raman adiabatic passage (STIRAP)
has previously been proposed for generating non-Abelian
gauge fields [1]. Dirac-like Hamiltonians, which exhibit ZB,
are simple examples of such non-Abelian gauge fields, and we
show how a variety of them can arise in a tripod system. The
Hamiltonian for atoms in an optical lattice is Dirac-like in the
subspace of the tripod’s two degenerate dark states. We pre-
dict that an atom’s mean position should thus undergo Dirac-
like ZB. However, the characteristic amplitude of tripod ZB
is the optical lattice wavelength, vs. the Compton wavelength
of Dirac ZB, and the oscillation energy is proportional to the
lattice recoil energy vs. the rest mass energy of the electron.
This places tripod ZB well within the range of experimental
observation, with a characteristic frequency of MHz vs. the
THz domain predicted for condensed matter implementations
[8]. Although we treat here the case of a noninteracting gas,
the ZB persists under the addition of weak interactions: The
Hamiltonian separates into center of mass and relative coordi-
nates, and the center of mass Hamiltonian is again Dirac-like.
In a dilute atomic cloud, the ZB should thus manifest itself as

an oscillation of the cloud’s center of mass.
We consider the tripod STIRAP scheme described in [1]

and shown in Fig. 1. The Hamiltonian in the interac-

Figure 1: Left: Tripod STIRAP scheme with Rabi frequencies as
defined in Eqs. (1-3). Right: Schematic geometry of tripod laser
beams yielding the Rabi frequencies of Eqs. (1-3).

tion picture is H = −�∑3
i=1 Ωi|0��i| + h.c. Defining Θi =�

∑i

j=1
��Ω j

��2, the dressed states include two dark states de-
generate at zero energy: |D1� = 1

Θ2
(Ω2|1�−Ω1|2�) and

|D2� = 1
Θ3

�
Ω∗

1Ω3|1�−Ω∗
2Ω3|2�−Θ2

2|3�
�

(we have chosen
an orthonormal basis). Suppose the atoms are now slowly
moving in the field. The degeneracy causes the Born-
Oppenheimer approximation to break, yielding an effective
U(2) non-Abelian gauge field. The effective Hamiltonian in
the 2× 2 dark subspace is H = 1

2m
(�p− Â)2 + Φ̂ where m is

the atom’s mass, Ai, j = i��Di|�∇|D j� is an effective vector po-
tential, and Φ̂ is a scalar Born-Huang potential resulting from
the coupling to the bright subspace. The following choice of
Rabi frequencies

Ω1(�r) = Ω
�

1− ε2 cosk0z (1)

Ω2(�r) = Ω
�

1− ε2 sin(k0z+π) (2)
Ω3(�r) = εΩe

ik0y, (3)

for Ω, ε, and k0 constant corresponds to the laser beam ge-
ometry in Fig. 1(b), and yields a Dirac-like Hamiltonian (a
related setup was proposed in [11] in the context of observing
spin relaxation effects). Specifically, after some trivial gauge
transformations, the two dark states feel an effective vector
potential

Ây =
�k0

2
�
1− ε2�σz (4)

Âz = −ε�k0σy (5)
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“Spin-up” ε H Analog

|D1� εR H = p
2

2m
+α(pyσz− pzσy) Rashba

1√
2
(|D1�+ i|D2�) εR H = p

2

2m
+α(pyσy− pzσz) Linear Dresselhaus

1√
2
(|D1�+ i|D2�) −εR H = p

2

2m
+α(pyσy + pzσz) Graphene sheet, in vicinity of Dirac point

Table I: By tuning ε and choosing different states to represent spin-up, the tripod setup can replicate a variety of Dirac-like Hamiltonians (see

e.g. [7]). Ref. [13] proposes an alternate method of generating a graphene-like Hamiltonian.

where the final term, which oscillates in time, is ZB. The am-

plitude of the oscillation is proportional to �∇�kξ(�k). We had

previously shown that the �k dependence of ξ(�k) occurs as

a direct consequence of the eigenfunctions being multival-

ued. The Schrödinger picture thus illuminates what is not evi-

dent in the Heisenberg representation–that the ZB here can be

viewed as a measurable consequence of the momentum-space

Berry phase.

We now suggest a possible experimental demonstration of

ZB using ultracold atoms. Suppose an ensemble of atoms is

prepared in the vibrational ground state of a harmonic trap.

A Raman pulse with space-dependent Rabi couplings is ap-

plied, as suggested in [11], to put the atom in a superposition

of dark states, after which the trap is switched off to allow bal-

listic expansion. The initial wavepacket can be approximated

by a Gaussian function g(�k;0) = d√
π e
− 1

2
(�k−�k(i))2

d
2

, where d

is the oscillator length of the trap, and �k(i)
is a momentum

boost (which is zero for the case of a stationary trap). For this

wavepacket, the expectation values of y and z oscillate as

�
�y(t)�
�z(t)�

�
=

��k(i)

m
t +

d

2π

Z
d�ke

−(�k−�k(i))2
d

2

(11)

× 1

k̃2

�
1− cos2ω(�k)t

��
(ε2−1)k̃z

2εk̃y

�

where we have defined k̃y = (1− ε2)ky, k̃z = 2εkz, and k̃ =�
k̃2

y
+ k̃2

z
. Eq. (11) shows that the ZB vanishes in the Abelian

cases, ε = 0 or ε = 1.

It is useful to consider the limit d → ∞, where g(�k;0) →
δ(�k−�k(i)), i.e., the initial wavepacket approaches a plane

wave. The integrals in Eqs. (11) become trivial, and we find

that

�
�y(t)�
�z(t)�

�
=

��k(i)

m
t +

1

2
�
k̃(i)

�2

�
1− cos2ω(�k(i))t

�

×
�

(ε2−1)k̃z

(i)

2εk̃y

(i)

�
.

In the opposite limit, d → 0, the ZB vanishes, and for inter-

mediate values the energy spread causes damping, as can be

shown analytically for bilayer graphene [8].

Due to the induced Born-Huang field, ZB will occur in this

system (unlike its condensed matter counterparts [7, 8, 9])

even if the wavepacket has an initial zero group velocity. Sup-

posing
85

Rb atoms, we take the lattice wavenumber to be

k0 = (2π/820)nm
−1

, and a Gaussian with�k(i) =�0 and width

k0d = 16.2, corresponding to the ground state of a trap with

trap frequency 112 Hz [15]. Fig. 3 shows that a pronounced

oscillation would occur in the z direction before damping out.

A typical time scale of the ZB here would be µs rather than

the fs predicted in e.g. graphene and related systems [8].

Figure 3: ZB for an atom with zero momentum spread (dashed), and

for a momentum spread corresponding to the velocity spread of a

cloud initially in a trap of frequency 112 Hz (solid). ZB oscillations

for finite momentum spread damp out over time, but persist over sev-

eral periods.

We have shown that the mean position of the atom os-

cillates sinusoidally. However, ZB can also be viewed in

terms of state-resolved spatial dynamics. For the Gaussian

initial wavepacket, it is not difficult to show that as the cen-

ter of mass of the cloud is oscillating in the z direction, in

the y direction, the wavepacket separates by spin, such that

�y1,2(t)�=±�k0t/m (see Fig. 4). This spin separation, which

coexists with the ZB, is a manifestation of the atomic spin

Hall effect proposed in a different setup [16]; a related effect

occurs in velocity-selective coherent population trapping [17].

Fig. 5 shows the dynamics of the “spin-up” component

of the wavepacket in a representative non-Abelian case. In

essence, the effective magnetic field deflects spin-up and spin-

down in opposite directions. As the two wavepackets sepa-

M. Merkl et al.

Fig. 1: One possible laser configuration for the tripod system
which results in a non-trivial gauge potential for the two
corresponding dark states.

fields the dynamics is well described by a Dirac-type
equation. In recent papers [2,15–18] it has been shown how
atoms with an internal tripod level structure, see fig. 1,
may evolve under the influence of an effective non-Abelian
vector potential. Here we restrict the motion to only one
direction (see also ref. [3] for a two-dimensional description
of Zitterbewegung).
The paper is organized as follows. In the following

section we will briefly outline the derivation of the gauge
potentials for the spin system. As an example of the
resulting dynamics in the presence of non-trivial gauge
potentials we study the Zitterbewegung for neutral atoms.
We discuss the phenomenon of Rabi-type oscillations of
the atomic internal states occurring in this context and
finally the damping mechanisms due to the finite widths
of the wave packets.

The equation of motion. – In the following we will
assume the motion of the atoms to be restricted to one
dimension. We choose our coordinate system such that the
x-axis is aligned along that particular dimension. A gas of
ultracold atoms can be considered dynamically one dimen-
sional if the corresponding transversal energy scale given
by the transversal trapping frequency is much higher than
all other energy scales, such as the temperature or chemi-
cal potential in the presence of collisional interactions. In
this paper we neglect collisions between the atoms which
is justified if we consider sufficiently dilute gases.
To the effectively one-dimensional cloud of cold atoms

we apply the scheme for inducing non-Abelian gauge
potentials as presented in [16], and obtain in the limit
of low momenta a quasi-relativistic situation as shown
in [2]. For this purpose, we consider the adiabatic motion
of atoms in the presence of three resonant laser beams.
The technique is remarkably versatile and offers the possi-
bility to shape the gauge potentials quite freely. Vari-
ous possibilities exist for creating non-trivial equations
of motions [16]. Here we have chosen a laser configura-
tion where two of the beams have the same intensity but
counter-propagate. The third laser beam has a different
intensity compared to the two other laser beams. Its wave
vector is chosen to be perpendicular to the axis defined by
the propagation direction of laser 1 or 2. The configuration
is depicted in fig. 1.

By defining the total Rabi frequency Ω=
√

∑3
n=1 |Ωn|2

and the mixing angle θ from tan θ=
√

|Ω1|2+ |Ω2|2/|Ω3|,
we can write the Rabi frequencies of the participating
laser fields in the following form: Ω1 =Ω sin θe−iκx/

√
2,

Ω2 =Ω sin θeiκx/
√
2 and Ω3 =Ω cos θe−iκy. Applying this

notation we find that in the interaction picture the
Hamiltonian is given by

Ĥint =−! (Ω1|0〉〈1|+Ω2|0〉〈2|+Ω3|0〉〈3|)+h.a. (1)

The Hamiltonian Ĥint yields two dark states |Di〉, i= 1, 2,
which contain no contribution from the excited state |0〉:

|D1〉=
1√
2
e−iκy

(

eiκx|1〉− e−iκx|2〉
)

, (2)

|D2〉=
1√
2
e−iκy cos θ

(

eikx|1〉+ e−ikx|2〉
)

− sin θ|3〉. (3)

Both dark states are eigenstates of Ĥint with zero eigen-
energy. They depend on the position due to the spatial
dependence of the Rabi frequencies Ωi .
The bright state |B〉 ∼Ω∗1|1〉+Ω∗2|2〉+Ω∗3|3〉 is coupled

to the exited state |0〉 with the Rabi frequency Ω and
therefore separated from the dark states by energies ±!Ω.
If |Ω| is large compared to any two-photon detuning or
Doppler shifts due to the atomic motion, we can neglect
transitions out of the dark states, i.e., we use the adiabatic
approximation. In this limit it is sufficient to expand the
general state vector |χ〉 of the quantum system in the dark
state basis

|χ(r, t)〉=
2
∑

i=1

Ψi(r, t)|Di(r)〉, (4)

where the expansion coefficients Ψi(r, t) are the wave
functions for the centre of mass motion of the atoms in
the dark state i. By collecting the wave functions in the
spinor

Ψ̄=

(

Ψ1
Ψ2

)

(5)

we find that the latter obeys the effective Schrödinger
equation [16]

i!
∂

∂t
Ψ̄=

[

1

2m

(

px− Â
)2
+ V̂ + Φ̂

]

Ψ̄, (6)

where px denotes the momentum along the x-axis and m
is the atomic mass. Here Â is an effective vector potential
matrix, also called the Mead-Berry connection [19,20]
and V̂ and Φ̂ are effective scalar potentials matrices. The
gauge potentials An,m = i!〈Dn(r)|∇Dm(r)〉 and Φn,m =
!
2

2m 〈Dn(r)|∇B(r)〉〈B(r)|∇Dm(r)〉 emerge due to the
spatial dependence of the dark states. The additional
scalar potential is defined by Vn,m = 〈Dn(r)|V̂ |Dm(r)〉
with V̂ =

∑3
j=1 Vj(r)|j〉〈j| and Vj(r) being the trapping

potential for atoms in the bare state j.

54002-p2



Analog realized with individual atomic ions

Ref. 
Gerritsma, et al. Nature (2010)

3

›
~

FIG. 1: Expectation values 〈x̂(t)〉 for particles with dif-
ferent masses. The linear curve (!) represents a massless
particle (Ω = 0) moving with the speed of light given by
c = 2ηΩ̃∆ = 0.052 ∆/µs for all curves. The other curves
are for particles with increasing mass moving down from
the linear curve. Their Compton wavelengths are given by
λC := 2ηΩ̃∆/Ω = 5.4∆ ("), 2.5∆ (#), 1.2∆ (•) and 0.6∆
($), respectively. The solid curves represent numerical sim-
ulations. The figure shows Zitterbewegung for the crossover
from the relativistic 2ηΩ̃ # Ω to the nonrelativistic limit
2ηΩ̃ $ Ω. The error bars are obtained from a linear fit as-
suming quantum projection noise. The inset shows fitted Zit-
terbewegung amplitude RZB (!) and frequency ωZB (•) ver-
sus the parameter Ω/ηΩ̃ (which is proportional to the mass).
Error bars 1σ.

momentum 〈p̂〉 = 2.2!/∆ is shown. The corresponding
reconstructed probability distributions are displayed in
Fig. 3b and it can be seen that there is indeed no Zitter-
bewegung or splitting of the wavefunction.

We have implemented a proof-of-principle quantum op-
tical simulation of a tunable relativistic quantum me-
chanical system. We have demonstrated that the simu-
lated one-dimensional Dirac dynamics for a free particle
shows Zitterbewegung and several of its counterintuitive
quantum relativistic features. A natural route for the
near future will be to move theoretically and experimen-
tally towards the simulation of dynamics that are impos-
sible (or difficult) to calculate in real systems, such as
in quantum chemistry [27] or quantized Dirac fields in a
quantum field theory context [1]. We consider this ex-
periment to be an important first step that will pave the
way towards more complex quantum simulations. Fur-
thermore, the mapping between quantum optical systems
and relativistic quantum mechanics may be followed by
further analogies between the Dirac dynamics and the
Jaynes-Cummings model [9, 28, 29] and photonic [10] or
sonic analogies [30].

(a)

(b)

›

FIG. 2: Zitterbewegung for a state with non-zero average mo-
mentum. (a) Initially, Zitterbewegung appears due to inter-
ference of positive and negative energy parts of the state. As
these parts separate, the oscillatory motion fades away. The
solid curve represents a numerical simulation. (b) Measured
(filled areas) and numerically calculated (solid lines) proba-
bility distributions |ψ(x)|2 at the times t = 0, 75 and 150 µs
(as indicated by the arrows in (a)). The probability distribu-
tion corresponding to the state |1〉 is inverted for clarity. The
vertical solid line represents 〈x̂〉 as plotted in (a). The two
dashed lines are the expectation values for the positive and
negative energy parts of the spinor. Error bars 1σ.

Methods

Measurement of 〈x〉 and |ψ(x)|2. In ion trap ex-
periments the only observable that can directly be mea-
sured by fluorescence detection is σz. Additional laser
pulses can be used to map other observables onto σz. In
the experiment we apply a state-dependent displacement
operation U = exp(−ikx̂σx/2) to the quantum state ρ
followed by a measurement of σz which is equivalent to
measuring the observable

A(k) = U †σzU = cos(kx̂)σz + sin(kx̂)σy . (5)

Here, k = 2ηΩpt/∆ is proportional to the interaction
time t. If the ion’s internal initial state is the eigenstate
of σz belonging to eigenvalue +1, 〈A(k)〉 = 〈cos(kx̂)〉
and for the eigenstate of σy belonging to eigenvalue +1,
〈A(k)〉 = 〈sin(kx̂)〉. A Fourier transformation of these
measurements yields the probability density 〈δ(x̂−x)〉 in
position space.

For the position operator we have that d
dk 〈A(k)〉

∣

∣

t=0
∝

〈x̂σy〉. Measuring 〈x̂〉 thus requires the preparation of an
eigenstate of σy which however cannot be done directly
when the motional state is entangled with the internal

Measuring x and p quadratures in harmonic trap
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Figure S1: A Schematic of laser set up: two counter propagating beams (orange and yellow)

couple the Zeeman levels of the F = 1 ground state. These levels differ in momentum by 2

units of the recoil momentum each, and we consider a situation where, if the mF = 0 state is

at rest, the mF = 0 state moves with positive momentum (red arrow) and the mF = +1 state

with negative (blue arrow). Ket labels are for the |mF , k/kL� basis. B Full, 3-level dispersion

relationship described by Eqn. S1 with � = 9EL and Ω = 3EL. Red indicates mF = −1,

black mF = 0, and blue mF = +1. Dashed curves show the uncoupled “bare” states while

solid curves show the dressed states, with color indicating the dominant contribution to the

superposition. We concentrate on the high-energy avoided crossing, which is shown in greater

detail in the lower left. This region of the dispersion relationship is used to simulate the Dirac

hamiltonian.

We transfer these atoms to the |F = 1,mF = 0� state through adiabatic rapid passage using

15.0 MHz radiofrequency radiation and a magnetic field sweep. These atoms are at rest. Using

a pair of counterpropagating Raman beams with wavelength λL = 790.2 nm and frequency

difference δω = gFµBB0 + 4EL + � (where EL = h̄2k2
L/2mRb is the natural unit of energy,

kL = 2π/λL, mRb is the atomic mass, and � = h × 32 kHz is the quadratic Zeeman shift, as

defined in Ref. S#), we transfer all of the atoms from the state |mF = 0, kx = 0� to |mF =

−1, kx = 2kL� using a 25 µs π-pulse, such that the atoms are now moving in the laboratory

frame with two units of recoil momentum: c = 2h̄kL/m. Before the trap has a chance to

change the momentum of the atoms (200 µs), we change the frequency difference between the

Raman lasers to δω = gFµBB0, where the state |mF = −1, kx = 2kL� is resonant with the state

8
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ULTRASLOW RELATIVISTIC SYSTEMultracold atoms subject to a Dirac Hamiltonian.

In this experiment, we study the motion of particles along a single (x) direction as descibed

by the 1 + 1-dimensional Dirac equation

ĤDψ =
�
cp̂xσ̌z +mec

2σ̌x

�
ψ, (1)

where c is the speed of light, me the particles’ mass (and mec
2

its rest energy), p̂x the momen-

tum operator, and σx(z) the Pauli spin operators, and ψ a 2-spinor whose components represent

the positive- and negative-energy solutions. For massless particles, the equation would sim-

ply describe free electrons or positrons with opposite momenta, as shown in the dashed lines

in Fig. 1B; the mass couples these solutions and creates an avoided crossing with repulsion

proportional to the rest energy, as seen in the solid lines of Fig. 1B.

We engineer an equivalent Hamiltonian for ultracold
87

Rb atoms by coupling the internal

Zeeman levels of the F = 1 ground state with counterpropagating Raman lasers, which reso-

nantly couple energy and momentum between the laser fields and the atoms (4,5) and gives two

dressed states that act as the positive and negative energy components. The laser wavelength

λL = 790.2 nm establishes the relevant length scale and the laser intensity determines the cou-

pling h̄Ω between states (with energies on the order of the recoil energy from a photon, EL =

h
2
/2λ2

Lmat), giving a mapping of the parameters of Eq. 1 from c → 2h̄kL/mat ≈ 11 mm/s and

mec
2 → h̄Ω/2 ≈ h× 1 kHz.

Zitterbewegung arises from the noncommutativity between the Pauli matrices associated

with the two terms in the Dirac equation; in the Heisenberg picture, the position and momentum

operators have oscillatory components. We prepare an atomic state as an eigenstate of the Pauli

σx operator, and suddenly turn on the Hamiltonian HD. The expectation values of position and

momentum observables

�x(t)� = x(0) +
λC

4π
sin(ωZt) (2)
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Fig. 1. (Having a difficult time getting proportions that make a nice

2-column figure.) A Example absorption image of
87

Rb atoms in situ. B Dispersion re-

lationship for the Dirac Hamiltonian for massless (dashed) and massive (solid) electrons and

positrons. The same dispersion relationship applies to the atomic system, with an appropriate

mapping between the quantities p, m, and c (see text). C Effective speed of light and coupling

frequency measured for different values of the coupling laser amplitude. D Zitterbewegung am-
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In this experiment, we study the motion of particles along a single (x) direction as descibed

by the 1 + 1-dimensional Dirac equation

ĤDψ =
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cp̂xσ̌z +mec

2σ̌x

�
ψ, (1)

where c is the speed of light, me the particles’ mass (and mec
2

its rest energy), p̂x the momen-

tum operator, and σx(z) the Pauli spin operators, and ψ a 2-spinor whose components represent

the positive- and negative-energy solutions. For massless particles, the equation would sim-

ply describe free electrons or positrons with opposite momenta, as shown in the dashed lines

in Fig. 1B; the mass couples these solutions and creates an avoided crossing with repulsion

proportional to the rest energy, as seen in the solid lines of Fig. 1B.

We engineer an equivalent Hamiltonian for ultracold
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Rb atoms by coupling the internal

Zeeman levels of the F = 1 ground state with counterpropagating Raman lasers, which reso-

nantly couple energy and momentum between the laser fields and the atoms (4,5) and gives two

dressed states that act as the positive and negative energy components. The laser wavelength

λL = 790.2 nm establishes the relevant length scale and the laser intensity determines the cou-
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2 → h̄Ω/2 ≈ h× 1 kHz.

Zitterbewegung arises from the noncommutativity between the Pauli matrices associated

with the two terms in the Dirac equation; in the Heisenberg picture, the position and momentum

operators have oscillatory components. We prepare an atomic state as an eigenstate of the Pauli
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momentum observables

�x(t)� = x(0) +
λC

4π
sin(ωZt) (2)

2

-2

0

2

En
er

gy
,  

m
c2

-2 0 2
Momentum,  p/mc

2mc
2

c



Ref. 
L. J. Leblanc et al (in preparation)

ULTRASLOW RELATIVISTIC SYSTEM

A

C

B

D -2

0

2

1.00.80.60.40.20.0

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-4

-2

0

2

4

1.00.80.60.40.20.0

-2

0

2

-2

0

2-2
-1
0
1
2
-1
0
1

x 
po

sit
io

n 
(µ

m
)

time (ms)

tTOF = 0

30 µs

130 µs

280 µs

530 µs

Fr
eq

ue
nc

y 
(k

Hz
) 

Power (units) 

c 
(c

m
/s

) 

Frequency (kHz) 

de
lta

-x
 (µ

m
)

En
er

gy
, E
/m
c2

momentum, p/mc

-2

0

2

-2 0 2

2mc2

c

10

5

0

x1
03   

800040000

6

5

E

0.4

0.3

0.2

0.1

0.0
6420

10 µm

Tuesday, 18 September, 12

Fig. 1. (Having a difficult time getting proportions that make a nice

2-column figure.) A Example absorption image of
87

Rb atoms in situ. B Dispersion re-

lationship for the Dirac Hamiltonian for massless (dashed) and massive (solid) electrons and

positrons. The same dispersion relationship applies to the atomic system, with an appropriate

mapping between the quantities p, m, and c (see text). C Effective speed of light and coupling

frequency measured for different values of the coupling laser amplitude. D Zitterbewegung am-

5

X

V



Ref. 
L. J. Leblanc et al (in preparation)

ULTRASLOW RELATIVISTIC SYSTEM

A

C

B

D -2

0

2

1.00.80.60.40.20.0

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-4

-2

0

2

4

1.00.80.60.40.20.0

-2

0

2

-2

0

2-2
-1
0
1
2
-1
0
1

x 
po

sit
io

n 
(µ

m
)

time (ms)

tTOF = 0

30 µs

130 µs

280 µs

530 µs

Fr
eq

ue
nc

y 
(k

Hz
) 

Power (units) 

c 
(c

m
/s

) 

Frequency (kHz) 

de
lta

-x
 (µ

m
)

En
er

gy
, E
/m
c2

momentum, p/mc

-2

0

2

-2 0 2

2mc2

c

10

5

0

x1
03   

800040000

6

5

E

0.4

0.3

0.2

0.1

0.0
6420

10 µm

Tuesday, 18 September, 12

Fig. 1. (Having a difficult time getting proportions that make a nice

2-column figure.) A Example absorption image of
87

Rb atoms in situ. B Dispersion re-

lationship for the Dirac Hamiltonian for massless (dashed) and massive (solid) electrons and

positrons. The same dispersion relationship applies to the atomic system, with an appropriate

mapping between the quantities p, m, and c (see text). C Effective speed of light and coupling

frequency measured for different values of the coupling laser amplitude. D Zitterbewegung am-

5

X

V

A

C

B

D -2

0

2

1.00.80.60.40.20.0

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-4

-2

0

2

4

1.00.80.60.40.20.0

-2

0

2

-2

0

2-2
-1
0
1
2
-1
0
1

x 
po

sit
io

n 
(µ

m
)

time (ms)

tTOF = 0

30 µs

130 µs

280 µs

530 µs

Fr
eq

ue
nc

y 
(k

Hz
) 

Power (units) 

c 
(c

m
/s

) 

Frequency (kHz) 

de
lta

-x
 (µ

m
)

En
er

gy
, E
/m
c2

momentum, p/mc

-2

0

2

-2 0 2

2mc2

c

10

5

0

x1
03   

800040000

6

5

E

0.4

0.3

0.2

0.1

0.0
6420

10 µm

Tuesday, 18 September, 12

Fig. 1. (Having a difficult time getting proportions that make a nice

2-column figure.) A Example absorption image of
87

Rb atoms in situ. B Dispersion re-

lationship for the Dirac Hamiltonian for massless (dashed) and massive (solid) electrons and

positrons. The same dispersion relationship applies to the atomic system, with an appropriate

mapping between the quantities p, m, and c (see text). C Effective speed of light and coupling

frequency measured for different values of the coupling laser amplitude. D Zitterbewegung am-

5

A

C

B

D -2

0

2

1.00.80.60.40.20.0

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-4

-2

0

2

4

1.00.80.60.40.20.0

-2

0

2

-2

0

2-2
-1
0
1
2
-1
0
1

x 
po

sit
io

n 
(µ

m
)

time (ms)

tTOF = 0

30 µs

130 µs

280 µs

530 µs

Fr
eq

ue
nc

y 
(k

Hz
) 

Power (units) 

c 
(c

m
/s

) 

Frequency (kHz) 

de
lta

-x
 (µ

m
)

En
er

gy
, E
/m
c2

momentum, p/mc

-2

0

2

-2 0 2

2mc2

c

10

5

0

x1
03   

800040000

6

5

E

0.4

0.3

0.2

0.1

0.0
6420

10 µm

Tuesday, 18 September, 12

Fig. 1. (Having a difficult time getting proportions that make a nice

2-column figure.) A Example absorption image of
87

Rb atoms in situ. B Dispersion re-

lationship for the Dirac Hamiltonian for massless (dashed) and massive (solid) electrons and

positrons. The same dispersion relationship applies to the atomic system, with an appropriate

mapping between the quantities p, m, and c (see text). C Effective speed of light and coupling

frequency measured for different values of the coupling laser amplitude. D Zitterbewegung am-

5



Ref. 
L. J. Leblanc et al (in preparation)

Start in pure
“massless” state

Evolve with coupling -4 -2 0 2 4

10

5

0

-5

-10

6

5

4

3

-0.5 0.0 0.5

A B

Energy (E
L )

Momentum (kL)

PHYSICAL INTERPRETATION



PHYSICAL INTERPRETATION
Rabi oscillations in a 2-level system

-100
0

100

-100
0

100

y  
Po

sit
io

n 
af

te
r T

O
F, 

µm

-100
0

100

-400 -200 0 200 400

x Position after TOF, µm

Evolution T
im

e

Two level system Time of flight images

-2

0

2

En
er

gy
,  

m
c2

-2 0 2
Momentum,  p/mc

2mc
2

c



PHYSICAL INTERPRETATION
Rabi oscillations in a 2-level system

-100
0

100

-100
0

100

y  
Po

sit
io

n 
af

te
r T

O
F, 

µm

-100
0

100

-400 -200 0 200 400

x Position after TOF, µm

Evolution T
im

e

Zitterbewegung Time of flight images

-4

-2

0

2

4

1.00.80.60.40.20.0

-2

0

2

-2

0

2
-2

-1

0

1

2
-1

0

1

x
 p

o
s
it
io

n
 (

µ
m

)

time (ms)

tTOF = 0

30 µs

130 µs

280 µs

530 µs


